ID: 2008.11002

Transitions in loopy random graphs with fixed degrees and arbitrary degree distributions

August 25, 2020

View on ArXiv
Fabian Aguirre Lopez, Anthony CC Coolen
Condensed Matter
Disordered Systems and Neura...

We analyze maximum entropy random graph ensembles with constrained degrees, drawn from arbitrary degree distributions, and a tuneable number of 3-loops (triangles). We find that such ensembles generally exhibit two transitions, a clustering and a shattering transition, separating three distinct regimes. At the clustering transition, the graphs change from typically having only isolated loops to forming loop clusters. At the shattering transition the graphs break up into extensively many small cliques to achieve the desired loop density. The locations of both transitions depend nontrivially on the system size. We derive a general formula for the loop density in the regime of isolated loops, for graphs with degree distributions that have finite and second moments. For bounded degree distributions we present further analytical results on loop densities and phase transition locations, which, while non-rigorous, are all validated via MCMC sampling simulations. We show that the shattering transition is of an entropic nature, occurring for all loop density values, provided the system is large enough.

Similar papers 1

Fabian Aguirre Lopez, Anthony CC Coolen
Disordered Systems and Neura...

We present an analytical approach for describing spectrally constrained maximum entropy ensembles of finitely connected regular loopy graphs, valid in the regime of weak loop-loop interactions. We derive an expression for the leading two orders of the expected eigenvalue spectrum, through the use of infinitely many replica indices taking imaginary values. We apply the method to models in which the spectral constraint reduces to a soft constraint on the number of triangles, wh...

A C C Coolen
Disordered Systems and Neura...
Statistical Mechanics

I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs ...

Charles Radin, Lorenzo Sadun
Statistical Mechanics
Combinatorics
Mathematical Physics

We study a mean field model of a complex network, focusing on edge and triangle densities. Our first result is the derivation of a variational characterization of the entropy density, compatible with the infinite node limit. We then determine the optimizing graphs for small triangle density and a range of edge density, though we can only prove they are local, not global, maxima of the entropy density. With this assumption we then prove that the resulting entropy density must ...

Fernando L. Metz, Isaac Pérez Castillo
Disordered Systems and Neura...
Statistical Mechanics
Physics and Society

Due to their conceptual and mathematical simplicity, Erd\"os-R\'enyi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like dist...

David V. Foster, Jacob G. Foster, ... , Grassberger Peter
Statistical Mechanics
Physics and Society

Ensembles of networks are used as null models in many applications. However, simple null models often show much less clustering than their real-world counterparts. In this paper, we study a model where clustering is enhanced by means of a fugacity term as in the Strauss (or "triangle") model, but where the degree sequence is strictly preserved -- thus maintaining the quenched heterogeneity of nodes found in the original degree sequence. Similar models had been proposed previo...

Richard Kenyon, Charles Radin, ... , Sadun Lorenzo
Combinatorics
Statistical Mechanics
Social and Information Netwo...
Probability

Based on numerical simulation and local stability analysis we describe the structure of the phase space of the edge/triangle model of random graphs. We support simulation evidence with mathematical proof of continuity and discontinuity for many of the phase transitions. All but one of themany phase transitions in this model break some form of symmetry, and we use this model to explore how changes in symmetry are related to discontinuities at these transitions.

R. Lambiotte, P. L. Krapivsky, ... , Redner S.
Physics and Society
Statistical Mechanics

We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\geq \frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anom...

Erik Volz
Statistical Mechanics
Disordered Systems and Neura...

We present an algorithm for generating random networks with arbitrary degree distribution and Clustering (frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and poisson degree distributions with variable levels of clustering. Such networks may be used as models of social networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering on the point of the phase transition where...

Lorenzo Cirigliano, Claudio Castellano, ... , Timár Gábor
Physics and Society
Disordered Systems and Neura...
Statistical Mechanics

Triadic closure, the formation of a connection between two nodes in a network sharing a common neighbor, is considered a fundamental mechanism determining the clustered nature of many real-world topologies. In this work we define a static triadic closure (STC) model for clustered networks, whereby starting from an arbitrary fixed backbone network, each triad is closed independently with a given probability. Assuming a locally treelike backbone we derive exact expressions for ...

Joe Neeman, Charles Radin, Lorenzo Sadun
Combinatorics
Mathematical Physics
Probability

We analyze the 3-parameter family of random networks which are uniform on networks with fixed number of edges, triangles, and nodes (between 33 and 66). We find precursors of phase transitions which are known to be present in the asymptotic node regime as the edge and triangle numbers are varied, and focus on one of the discontinuous ones. By use of a natural edge flip dynamics we determine nucleation barriers as a random network crosses the transition, in analogy to the proc...