September 3, 2020
Similar papers 2
June 13, 2018
We investigate learning of the differential geometric structure of a data manifold embedded in a high-dimensional Euclidean space. We first analyze kernel-based algorithms and show that under the usual regularizations, non-probabilistic methods cannot recover the differential geometric structure, but instead find mostly linear manifolds or spaces equipped with teleports. To properly learn the differential geometric structure, non-probabilistic methods must apply regularizatio...
May 22, 2023
Shape encoding and shape analysis are valuable tools for comparing shapes and for dimensionality reduction. A specific framework for shape analysis is the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, which is capable of shape matching and dimensionality reduction. Researchers have recently introduced neural networks into this framework. However, these works can not match more than two objects simultaneously or have suboptimal performance in shape variabil...
November 16, 2017
This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and nonlocal generalization of the...
February 16, 2023
Although Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, it suffers from various notorious problems (e.g., feature redundancy, and vanishing or exploding gradients), since updating parameters in Euclidean space cannot fully exploit the geometric structure of the solution space. As a promising alternative solution, Riemannian-based DL uses geometric optimization to update parameters on Riemannian manifolds and can leverage the underlying ...
October 11, 2021
In order to meet the requirements of practical applications, a model of deforming manifold in the embedded space is proposed. The deforming vector and deforming field are presented to precisely describe the deforming process, which have clear physical meanings. The proposed model is a modification of the general differential dynamic model, with constraints of spatial and temporal continuity on the deforming field. The deformation integral and derivative are presented as compa...
October 30, 2020
Manifold learning is a popular and quickly-growing subfield of machine learning based on the assumption that one's observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. This thesis presents a mathematical perspective on manifold learning, delving into the intersection of kernel learning, spectral graph theory, and differential geometry. Emphasis is placed on the remarkable interplay between graphs and manifolds, which forms the foundation for...
September 11, 2018
Deep neural networks have become the main work horse for many tasks involving learning from data in a variety of applications in Science and Engineering. Traditionally, the input to these networks lie in a vector space and the operations employed within the network are well defined on vector-spaces. In the recent past, due to technological advances in sensing, it has become possible to acquire manifold-valued data sets either directly or indirectly. Examples include but are n...
May 10, 2024
This paper introduces a novel approach to statistics and data analysis, departing from the conventional assumption of data residing in Euclidean space to consider a Riemannian Manifold. The challenge lies in the absence of vector space operations on such manifolds. Pennec X. et al. in their book Riemannian Geometric Statistics in Medical Image Analysis proposed analyzing data on Riemannian manifolds through geometry, this approach is effective with structured data like medica...
March 11, 2024
Data sets tend to live in low-dimensional non-linear subspaces. Ideal data analysis tools for such data sets should therefore account for such non-linear geometry. The symmetric Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich mathematical structure to account for a wide range of non-linear geometries that has been shown to be able to capture the data geometry through empirical evidence from classical non-linear embedding. Seco...
April 27, 2023
Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathemati...