September 3, 2020
Similar papers 3
April 3, 2023
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables and these models use a nonlinear function (generator) to map latent samples into the data space. On the other hand, the nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning. This weak projection, however, can be addressed by a Ri...
May 24, 2023
Manifolds discovered by machine learning models provide a compact representation of the underlying data. Geodesics on these manifolds define locally length-minimising curves and provide a notion of distance, which are key for reduced-order modelling, statistical inference, and interpolation. In this work, we first analyse existing methods for computing length-minimising geodesics. We find that these are not suitable for obtaining valid paths, and thus, geodesic distances. We ...
October 9, 2023
Manifolds discovered by machine learning models provide a compact representation of the underlying data. Geodesics on these manifolds define locally length-minimising curves and provide a notion of distance, which are key for reduced-order modelling, statistical inference, and interpolation. In this work, we propose a model-based parameterisation for distance fields and geodesic flows on manifolds, exploiting solutions of a manifold-augmented Eikonal equation. We demonstrate ...
May 19, 2018
Given data, deep generative models, such as variational autoencoders (VAE) and generative adversarial networks (GAN), train a lower dimensional latent representation of the data space. The linear Euclidean geometry of data space pulls back to a nonlinear Riemannian geometry on the latent space. The latent space thus provides a low-dimensional nonlinear representation of data and classical linear statistical techniques are no longer applicable. In this paper we show how statis...
October 28, 2020
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data. In this paper, we propose a deep manifold learning framework, called deep manifold transformation (DMT) for unsupervised NLDR and embedding learning. DMT enhances deep neural networks by using cross-layer local geometry-preservi...
March 2, 2020
Geometric deep learning has attracted significant attention in recent years, in part due to the availability of exotic data types for which traditional neural network architectures are not well suited. Our goal in this paper is to generalize convolutional neural networks (CNN) to the manifold-valued image case which arises commonly in medical imaging and computer vision applications. Explicitly, the input data to the network is an image where each pixel value is a sample from...
August 30, 2017
Non-Euclidean constraints are inherent in many kinds of data in computer vision and machine learning, typically as a result of specific invariance requirements that need to be respected during high-level inference. Often, these geometric constraints can be expressed in the language of Riemannian geometry, where conventional vector space machine learning does not apply directly. The central question this paper deals with is: How does one train deep neural nets whose final outp...
February 16, 2023
We propose extrinsic and intrinsic deep neural network architectures as general frameworks for deep learning on manifolds. Specifically, extrinsic deep neural networks (eDNNs) preserve geometric features on manifolds by utilizing an equivariant embedding from the manifold to its image in the Euclidean space. Moreover, intrinsic deep neural networks (iDNNs) incorporate the underlying intrinsic geometry of manifolds via exponential and log maps with respect to a Riemannian stru...
April 27, 2021
Autoencoders are a widespread tool in machine learning to transform high-dimensional data into a lowerdimensional representation which still exhibits the essential characteristics of the input. The encoder provides an embedding from the input data manifold into a latent space which may then be used for further processing. For instance, learning interpolation on the manifold may be simplified via the new manifold representation in latent space. The efficiency of such further p...
July 7, 2022
Manifold learning (ML) aims to seek low-dimensional embedding from high-dimensional data. The problem is challenging on real-world datasets, especially with under-sampling data, and we find that previous methods perform poorly in this case. Generally, ML methods first transform input data into a low-dimensional embedding space to maintain the data's geometric structure and subsequently perform downstream tasks therein. The poor local connectivity of under-sampling data in the...