September 21, 2014
Let C/Q be the genus 3 Picard curve given by the affine model y^3=x^4-x. In this paper we compute its Sato-Tate group, show the generalized Sato-Tate conjecture for C, and compute the statistical moments for the limiting distribution of the normalized local factors of C.
November 9, 2018
Statistical Machine Learning (SML) refers to a body of algorithms and methods by which computers are allowed to discover important features of input data sets which are often very large in size. The very task of feature discovery from data is essentially the meaning of the keyword `learning' in SML. Theoretical justifications for the effectiveness of the SML algorithms are underpinned by sound principles from different disciplines, such as Computer Science and Statistics. The...
September 15, 2021
For distinct odd primes $p$ and $q$, we define the Catalan curve $C_{p,q}$ by the affine equation $y^q=x^p-1$. In this article we construct the Sato-Tate groups of the Jacobians in order to study the limiting distributions of coefficients of their normalized L-polynomials.Catalan Jacobians are nondegenerate and simple with noncyclic Galois groups (of the endomorphism fields over $\mathbb Q$), thus making them interesting varieties to study in the context of Sato-Tate groups. ...
October 30, 2011
For an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato-Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato-Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A...
December 19, 2020
The vertical Sato--Tate conjectures gives expected trace distributions for for families of curves. We develop exact expression for the distribution associated to degree-$4$ representations of $\mathrm{USp}(4)$, $\mathrm{SU}(2)\times\mathrm{SU}(2)$ and $\mathrm{SU}(2)$ in the neighborhood of the extremities of the Weil bound. As a consequence we derive qualitative distinctions between the extremal traces arising from generic genus-$2$ curves and genus-$2$ curves with real or q...
November 29, 2014
We consider the distribution of normalized Frobenius traces for two families of genus 3 hyperelliptic curves over Q that have large automorphism groups: y^2=x^8+c and y^2=x^7-cx with c in Q*. We give efficient algorithms to compute the trace of Frobenius for curves in these families at primes of good reduction. Using data generated by these algorithms, we obtain a heuristic description of the Sato-Tate groups that arise, both generically and for particular values of c. We the...
November 7, 2016
In this article, we propose a new probabilistic model for the distribution of ranks of elliptic curves in families of fixed Selmer rank, and compare the predictions with previous results, and with the databases of curves over the rationals that we have at our disposal. In addition, we document a phenomenon we refer to as Selmer bias that seems to play an important role in the data and in our models.
October 27, 2008
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.
February 17, 2010
This is a survey article written for a workshop on L-functions and random matrix theory at the Newton Institute in July, 2004. The goal is to give some insight into how well-distributed sets of matrices in classical groups arise from families of $L$-functions in the context of function fields of curves over finite fields. The exposition is informal and no proofs are given; rather, our aim is to illustrate what is true by considering key examples.
June 19, 2006
A great many tools have been developed for supervised classification, ranging from early methods such as linear discriminant analysis through to modern developments such as neural networks and support vector machines. A large number of comparative studies have been conducted in attempts to establish the relative superiority of these methods. This paper argues that these comparisons often fail to take into account important aspects of real problems, so that the apparent superi...