ID: 2010.01213

Machine-Learning the Sato--Tate Conjecture

October 2, 2020

View on ArXiv
Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver
Mathematics
High Energy Physics - Theory
Statistics
Number Theory
Machine Learning

We apply some of the latest techniques from machine-learning to the arithmetic of hyperelliptic curves. More precisely we show that, with impressive accuracy and confidence (between 99 and 100 percent precision), and in very short time (matter of seconds on an ordinary laptop), a Bayesian classifier can distinguish between Sato-Tate groups given a small number of Euler factors for the L-function. Our observations are in keeping with the Sato-Tate conjecture for curves of low genus. For elliptic curves, this amounts to distinguishing generic curves (with Sato-Tate group SU(2)) from those with complex multiplication. In genus 2, a principal component analysis is observed to separate the generic Sato-Tate group USp(4) from the non-generic groups. Furthermore in this case, for which there are many more non-generic possibilities than in the case of elliptic curves, we demonstrate an accurate characterisation of several Sato-Tate groups with the same identity component. Throughout, our observations are verified using known results from the literature and the data available in the LMFDB. The results in this paper suggest that a machine can be trained to learn the Sato-Tate distributions and may be able to classify curves much more efficiently than the methods available in the literature.

Similar papers 1

90% Match
Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver
Number Theory
Machine Learning

We show that standard machine-learning algorithms may be trained to predict certain invariants of low genus arithmetic curves. Using datasets of size around one hundred thousand, we demonstrate the utility of machine-learning in classification problems pertaining to the BSD invariants of an elliptic curve (including its rank and torsion subgroup), and the analogous invariants of a genus 2 curve. Our results show that a trained machine can efficiently classify curves according...

Laura Alessandretti, Andrea Baronchelli, Yang-Hui He
Number Theory
Machine Learning
Machine Learning

Empirical analysis is often the first step towards the birth of a conjecture. This is the case of the Birch-Swinnerton-Dyer (BSD) Conjecture describing the rational points on an elliptic curve, one of the most celebrated unsolved problems in mathematics. Here we extend the original empirical approach, to the analysis of the Cremona database of quantities relevant to BSD, inspecting more than 2.5 million elliptic curves by means of the latest techniques in data science, machin...

Elira Shaska, Tony Shaska
Algebraic Geometry
Cryptography and Security

We use machine learning to study the locus ${\mathcal L}_n$ of genus two curves with $(n, n)$-split Jacobian. More precisely we design a transformer model which given values for the Igusa invariants determines if the corresponding genus two curve is in the locus ${\mathcal L}_n$, for $n=2, 3, 5, 7$. Such curves are important in isogeny based cryptography. During this study we discover that there are no rational points ${\mathfrak p} \in {\mathcal L}_n$ with weighted moduli ...

Kiran S. Kedlaya, Andrew V. Sutherland
Number Theory
Algebraic Geometry

We analyze the distribution of unitarized L-polynomials Lp(T) (as p varies) obtained from a hyperelliptic curve of genus g <= 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sarnak random matrix model) between the distributions of Lp(T) and of characteristic polynomials of random matrices in the compact Lie group USp(2g). We then formulate an analogue of the Sato-Tate conjecture for curves of genus 2, in...

83% Match
Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver
Number Theory
Machine Learning

We show that standard machine-learning algorithms may be trained to predict certain invariants of algebraic number fields to high accuracy. A random-forest classifier that is trained on finitely many Dedekind zeta coefficients is able to distinguish between real quadratic fields with class number 1 and 2, to 0.96 precision. Furthermore, the classifier is able to extrapolate to fields with discriminant outside the range of the training data. When trained on the coefficients of...

Yang-Hui He
Machine Learning
History and Overview
History and Philosophy of Ph...

We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...

83% Match
Kiran S. Kedlaya
Number Theory
Algebraic Geometry

We describe the analogue of the Sato-Tate conjecture for an abelian variety over a number field; this predicts that the zeta functions of the reductions over various finite fields, when properly normalized, have a limiting distribution predicted by a certain group-theoretic construction related to Hodge theory, Galois images, and endomorphisms. After making precise the definition of the "Sato-Tate group" appearing in this conjecture, we describe the classification of Sato-Tat...

Learning to be Simple

December 8, 2023

82% Match
Yang-Hui He, Vishnu Jejjala, ... , Sharnoff Max
Machine Learning
Group Theory
Mathematical Physics

In this work we employ machine learning to understand structured mathematical data involving finite groups and derive a theorem about necessary properties of generators of finite simple groups. We create a database of all 2-generated subgroups of the symmetric group on n-objects and conduct a classification of finite simple groups among them using shallow feed-forward neural networks. We show that this neural network classifier can decipher the property of simplicity with var...

Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Diego Marcondes, Adilson Simonis, Junior Barrera
Machine Learning
Machine Learning

Science consists on conceiving hypotheses, confronting them with empirical evidence, and keeping only hypotheses which have not yet been falsified. Under deductive reasoning they are conceived in view of a theory and confronted with empirical evidence in an attempt to falsify it, and under inductive reasoning they are conceived based on observation, confronted with empirical evidence and a theory is established based on the not falsified hypotheses. When the hypotheses testin...