October 7, 2020
Similar papers 4
December 2, 2006
Let A be a finite nonempty subset of an additive abelian group G, and let \Sigma(A) denote the set of all group elements representable as a sum of some subset of A. We prove that |\Sigma(A)| >= |H| + 1/64 |A H|^2 where H is the stabilizer of \Sigma(A). Our result implies that \Sigma(A) = Z/nZ for every set A of units of Z/nZ with |A| >= 8 \sqrt{n}. This consequence was first proved by Erd\H{o}s and Heilbronn for n prime, and by Vu (with a weaker constant) for general n.
March 12, 2013
Let $A$ be a multiplicative subgroup of $\mathbb Z_p^*$. Define the $k$-fold sumset of $A$ to be $kA=\{x_1+\dots+x_k:x_i \in A,1\leq i\leq k\}$. We show that $6A\supseteq \mathbb Z_p^*$ for $|A| > p^{\frac {11}{23} +\epsilon}$. In addition, we extend a result of Shkredov to show that $|2A|\gg |A|^{\frac 85-\epsilon}$ for $|A|\ll p^{\frac 59}$.
July 7, 2006
Fix a density d in (0,1], and let F_p^n be a finite field, where we think of p fixed and n tending to infinity. Let S be any subset of F_p^n having the minimal number of three-term progressions, subject to the constraint |S| is at least dp^n. We show that S must have some structure, and that up to o(p^n) elements, it is a union of a small number of cosets of a subspace of dimension n-o(n).
March 15, 2010
We introduce a new probabilistic technique for finding 'almost-periods' of convolutions of subsets of groups. This gives results similar to the Bogolyubov-type estimates established by Fourier analysis on abelian groups but without the need for a nice Fourier transform to exist. We also present applications, some of which are new even in the abelian setting. These include a probabilistic proof of Roth's theorem on three-term arithmetic progressions and a proof of a variant of...
September 13, 2017
We prove results on the structure of a subset of the circle group having positive inner Haar measure and doubling constant close to the minimum. These results go toward a continuous analogue in the circle of Freiman's $3k-4$ theorem from the integer setting. An analogue of this theorem in $\mathbb{Z}_p$ has been pursued extensively, and we use some recent results in this direction. For instance, obtaining a continuous analogue of a result of Serra and Z\'emor, we prove that i...
October 24, 2019
In this paper we determine the number and typical structure of sets of integers with bounded doubling. In particular, improving recent results of Green and Morris, and of Mazur, we show that the following holds for every fixed $\lambda > 2$ and every $k \geqslant (\log n)^4$: if $\omega \to \infty$ as $n \to \infty$ (arbitrarily slowly), then almost all sets $A \subset [n]$ with $|A| = k$ and $|A + A| \leqslant \lambda k$ are contained in an arithmetic progression of length $...
March 23, 2020
In this paper, we describe the structure of finite groups whose element orders or proper (abelian) subgroup orders form an arithmetic progression of ratio $r\geq 2$. This extends the case $r=1$ studied in previous papers \cite{1,8,4}.
September 22, 2011
Let A and B be subsets of an elementary abelian 2-group G, none of which are contained in a coset of a proper subgroup. Extending onto potentially distinct summands a result of Hennecart and Plagne, we show that if |A+B|<|A|+|B|, then either A+B=G, or the complement of A+B in G is contained in a coset of a subgroup of index at least 8, whence |A+B| is at least 7/8 |G|. We indicate conditions for the containment to be strict, and establish a refinement in the case where the si...
March 31, 2020
Let $G$ be a finite cyclic group, written additively, and let $A,\ B$ be nonempty subsets of $G$. We will say that $G= A+B$ is a \textit{factorization} if for each $g$ in $G$ there are unique elements $a,\ b$ of $G$ such that $g=a+b, \ a\in A, b\in B$. In particular, if $A$ is a complete set of residues $modulo$ $|A|$, then we call the factorization a \textit{coset factorization} of $G$. In this paper, we mainly study a factorization $G= A+B$, where $G$ is a finite cyclic gro...
April 12, 2013
Let $A$ and $B$ be additive sets of $\mathbb{Z}_{2k}$, where $A$ has cardinality $k$ and $B=v.\complement A$ with $v\in\mathbb{Z}_{2k}^{\times}$. In this note some bounds for the cardinality of $A+B$ are obtained, using four different approaches. We also prove that in a special case the bound is not sharp and we can recover the whole group as a sumset.