November 10, 2020
Similar papers 4
August 29, 2016
A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to "single-photon sources", where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity squeezed beam of light would be desirable for a range of applications such as quantum imaging, sensing, enhanced precision measurements and information processing. Howeve...
July 6, 2024
Room temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic field confinement. These conditions usually involve a significant degree of molecular disorder ...
August 20, 2013
The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pu...
July 21, 2016
We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pul...
February 28, 2023
The small cross section of Raman scattering poses a great challenge for its direct study at the single-molecule level. By exploiting the high Franck-Condon factor of a common-mode resonance, choosing a large vibrational frequency difference in electronic ground and excited states and operation at T < 2K, we succeed at driving a coherent stimulated Raman transition in individual molecules. We observe and model a spectral splitting that serves as a characteristic signature of t...
October 18, 2007
We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and...
February 14, 2019
We report on cryogenic coupling of organic molecules to ring microresonators obtained by looping sub-wavelength waveguides (nanoguides). We discuss fabrication and characterization of the chip-based nanophotonic elements which yield resonator finesse in the order of 20 when covered by molecular crystals. Our observed extinction dips from single molecules reach 22%, consistent with the expected Purcell enhancements up to 11 folds. Future efforts will aim at efficient coupling ...
March 30, 2011
We employ heterodyne interferometry to investigate the effect of a single organic molecule on the phase of a propagating laser beam. We report on the first phase-contrast images of individual molecules and demonstrate a single-molecule electro-optical phase switch by applying a voltage to the microelectrodes embedded in the sample. Our results may find applications in single-molecule holography, fast optical coherent signal processing, and single-emitter quantum operations.
July 23, 2007
Single dye molecules at cryogenic temperatures display many spectroscopic phenomena known from free atoms and are thus promising candidates for fundamental quantum optical studies. However, the existing techniques for the detection of single molecules have either sacrificed the information on the coherence of the excited state or have been inefficient. Here we show that these problems can be addressed by focusing the excitation light near to the absorption cross section of a ...
July 10, 2017
The interaction of organic molecules and molecular aggregates with electromagnetic fields that are strongly confined inside optical cavities within nanoscale volumes, has allowed the observation of exotic quantum regimes of light-matter interaction at room temperature, for a wide variety of cavity materials and geometries. Understanding the universal features of such organic cavities represents a significant challenge for theoretical modelling, as experiments show that these ...