November 10, 2020
Similar papers 5
December 9, 2021
Vibrational levels of the electronic ground states in dye molecules have not been previously explored at high resolution in solid matrices. We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene. To do this, we use narrow-band continuous-wave lasers and combine spectroscopy methods based on fluorescence excitation and stimulated emission depletion (STED) to assess indivi...
January 18, 2022
Scalability and miniaturization are hallmarks of solid-state platforms for photonic quantum technologies. Still a main challenge is two-photon interference from distinct emitters on chip. This requires local tuning, integration and novel approaches to understand and tame noise processes. A promising platform is that of molecular single photon sources. Thousands of molecules with optically tuneable emission frequency can be easily isolated in solid matrices and triggered with ...
January 30, 2017
The efficient interaction of light with quantum emitters is crucial to most applications in nano and quantum photonics, such as sensing or quantum information processing. Effective excitation and photon extraction are particularly important for the weak signals emitted by a single atom or molecule. Recent works have introduced novel collection strategies, which demonstrate that large efficiencies can be achieved by either planar dielectric antennas combined with high numerica...
February 25, 2021
Single molecules in solid-state matrices have been proposed as sources of single-photon Fock states back 20 years ago. Their success in quantum optics and in many other research fields stems from the simple recipes used in the preparation of samples, with hundreds of nominally identical and isolated molecules. Main challenges as of today for their application in photonic quantum technologies are the optimization of light extraction and the on-demand emission of indistinguisha...
July 6, 2020
Many physical systems display quantized energy states. In optics, interacting resonant cavities show a transmission spectrum with split eigenfrequencies, similar to the split energy levels that result from interacting states in bonded multi-atomic, i.e. molecular, systems. Here, we study the nonlinear dynamics of photonic diatomic molecules in linearly coupled microresonators and demonstrate that the system supports the formation of self-enforcing solitary waves when a laser ...
June 4, 2013
The goal of the present article is to review the major developments that have led to the current understanding of molecule-field interactions and experimental methods for manipulating molecules with electromagnetic fields. Molecule-field interactions are at the core of several, seemingly distinct, areas of molecular physics. This is reflected in the organization of this article, which includes sections on Field control of molecular beams, External field traps for cold molecul...
April 2, 2020
Solid-state single photon sources (SPSs) with narrow line width play an important role in many leading quantum technologies. Within the wide range of SPSs studied to date, single fluorescent molecules hosted in organic crystals stand out as bright, photostable SPSs with a lifetime-limited optical resonance at cryogenic temperatures. Furthermore, recent results have demonstrated that photostability and narrow line widths are still observed from single molecules hosted in a nan...
September 20, 2022
Single quantum emitters play a fundamental role in the development of quantum technologies such as quantum repeaters, and quantum information processing. Isolating individual molecules with stable optical emission is an essential step for these applications, specially for those molecules that present large coherence times at room temperature. Among them, vanadium-oxide phthalocyanine (VOPc) molecules stand out as promising candidates due to their large coherence times measure...
October 11, 2013
Organic light emitting devices and solar cells are machines that create, manipulate and destroy excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is dark with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usu...
November 12, 2019
Single molecules in solids have been considered as an attractive class of solid-state single quantum systems because they can be chemically synthesized at low cost to have stable narrow transitions at desired wavelengths. Here we report and demonstrate single dibenzoterrylene molecules in crystalline anthracene nanosheets as a robust and versatile solid-state platform for delicate photophysics studies and building blocks of single-photon devices. The high-quality nanosheet sa...