November 26, 2020
We investigate the absorption cross section of planar scalar massless waves impinging on spherically symmetric black holes which are solutions of the novel 4D Einstein-Gauss-Bonnet theory of gravity. Besides the mass of the black hole, the solution depends also on the Gauss-Bonnet constant coupling. Using the partial waves approach, we show that the absorption cross section depends on the Gauss-Bonnet coupling constant. Our numerical results present excellent agreement with the low- and high- frequency approximations, including the so-called sinc approximation.
Similar papers 1
July 31, 2013
We consider planar massless scalar waves impinging upon a Kerr black hole, for general angles of incidence. We compute the absorption cross section via the partial wave approach, and present a gallery of results. In the low-frequency regime, we show that the cross section approaches the horizon area; in the high-frequency regime, we show that the cross section approaches the geodesic capture cross section. In the aligned case, we extend the complex angular momentum method to ...
November 27, 2015
Black holes are a paradigm in nowadays physics, and are expected to be hosted at the center of galaxies. Supermassive galactic black holes are not isolated, and their surroundings play crucial roles in many observational features. The absorption and scattering of fields by isolated black holes have been vastly studied, allowing the understanding of many phenomenological features. However, as far as we are aware, a study of the influence of the presence of matter surrounding b...
September 6, 1996
In this paper we compute the low energy absorption cross-section for minimally coupled massles scalars and spin-$1/2$ particles, into a general spherically symmetric black hole in arbitrary dimensions. The scalars have a cross section equal to the area of the black hole, while the spin-$1/2$ particles give the area measured in a flat spatial metric conformally related to the true metric.
May 20, 2009
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all ma...
December 4, 2022
In this work, we numerically investigate the scattering and absorption cross section of the massless scalar field from some well-known regular black holes by using the partial wave approach. Our computational results indicate that the larger the parameters, the lower the associated total absorption cross section maxima. When compared to the Schwarzschild black hole, the scattering cross section is enhanced in some regular black hole spacetimes, meanwhile the scattering width ...
July 4, 2017
We study the absorption of plane waves by Kerr black holes. We calculate the absorption cross section: the area of the black hole shadow at a finite wavelength. We present a unified picture of the absorption of all massless bosonic fields, focussing on the on-axis incidence case. We investigate the spin-helicity effect, arising from a coupling between dragging of frames and the helicity of a polarized wave. We introduce and calibrate an extended sinc approximation which provi...
We study gravitational absorption effects using effective on-shell scattering amplitudes. We develop an in-in probability-based framework involving plane- and partial-wave coherent states for the incoming wave to describe the interaction of the wave with a black hole or another compact object. We connect this framework to a simplified single-quantum analysis. The basic ingredients are mass-changing three-point amplitudes, which model the leading absorption effects and a spect...
April 17, 2020
Alternative theories of gravity and the parameterized deviation approach allow black hole solutions to have additional parameters beyond mass, charge and angular momentum. Matter fields could be, in principle, affected by the additional parameters of these solutions. We compute the absorption cross section of massless spin-0 waves by static Konoplya-Zhidenko black holes, characterized by a deformation parameter introduced in the mass term, and compare it with the well-known a...
April 6, 2009
We present a study of scattering of massless planar scalar waves by a charged non-rotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semi-classical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. ...
August 21, 2001
We discuss the absorption cross section for the minimally-coupled massless scalar field into a stationary and circularly symmetric black hole with nonzero angular velocity in four or higher dimensions. In particular, we show that it equals the horizon area in the zero-frequency limit provided that the solution of the scalar field equation with an incident monochromatic plane wave converges pointwise to a smooth time-independent solution outside the black hole and on the futur...