ID: 2012.04656

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

View on ArXiv
Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, Nikhil Raghuram, Fabian Ruehle
High Energy Physics - Theory

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ conjecture. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in $\mathbb{P}^4.$

Similar papers 1

Machine learning Calabi-Yau metrics

October 18, 2019

91% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

Lectures on Numerical and Machine Learning Methods for Approximating Ricci-flat Calabi-Yau Metrics

December 28, 2023

89% Match
Lara B. Anderson, James Gray, Magdalena Larfors
High Energy Physics - Theory

Calabi-Yau (CY) manifolds play a ubiquitous role in string theory. As a supersymmetry-preserving choice for the 6 extra compact dimensions of superstring compactifications, these spaces provide an arena in which to explore the rich interplay between physics and geometry. These lectures will focus on compact CY manifolds and the long standing problem of determining their Ricci flat metrics. Despite powerful existence theorems, no analytic expressions for these metrics are know...

Find SimilarView on arXiv

Calabi-Yau Metrics, Energy Functionals and Machine-Learning

December 20, 2021

89% Match
Anthony Ashmore, Lucille Calmon, ... , Ovrut Burt A.
Machine Learning
Algebraic Geometry

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.

Find SimilarView on arXiv

Symbolic Approximations to Ricci-flat Metrics Via Extrinsic Symmetries of Calabi-Yau Hypersurfaces

December 27, 2024

89% Match
Viktor Mirjanić, Challenger Mishra
Machine Learning
Algebraic Geometry
Differential Geometry

Ever since Yau's non-constructive existence proof of Ricci-flat metrics on Calabi-Yau manifolds, finding their explicit construction remains a major obstacle to development of both string theory and algebraic geometry. Recent computational approaches employ machine learning to create novel neural representations for approximating these metrics, offering high accuracy but limited interpretability. In this paper, we analyse machine learning approximations to flat metrics of Fer...

Find SimilarView on arXiv

The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

December 7, 2018

89% Match
Yang-Hui He
Algebraic Geometry
Mathematical Physics
Machine Learning

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

Find SimilarView on arXiv

Calabi-Yau metrics through Grassmannian learning and Donaldson's algorithm

October 15, 2024

89% Match
Carl Henrik Ek, Oisin Kim, Challenger Mishra
Machine Learning
Algebraic Geometry
Differential Geometry

Motivated by recent progress in the problem of numerical K\"ahler metrics, we survey machine learning techniques in this area, discussing both advantages and drawbacks. We then revisit the algebraic ansatz pioneered by Donaldson. Inspired by his work, we present a novel approach to obtaining Ricci-flat approximations to K\"ahler metrics, applying machine learning within a `principled' framework. In particular, we use gradient descent on the Grassmannian manifold to identify a...

Find SimilarView on arXiv

Learning Size and Shape of Calabi-Yau Spaces

November 2, 2021

88% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
Machine Learning

We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...

Find SimilarView on arXiv

Machine learning for complete intersection Calabi-Yau manifolds: a methodological study

July 30, 2020

88% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

Find SimilarView on arXiv

Numerical Calabi-Yau metrics from holomorphic networks

December 9, 2020

88% Match
Michael R. Douglas, Subramanian Lakshminarasimhan, Yidi Qi
Complex Variables
Computational Physics

We propose machine learning inspired methods for computing numerical Calabi-Yau (Ricci flat K\"ahler) metrics, and implement them using Tensorflow/Keras. We compare them with previous work, and find that they are far more accurate for manifolds with little or no symmetry. We also discuss issues such as overparameterization and choice of optimization methods.

Find SimilarView on arXiv
David S. Berman, Yang-Hui He, Edward Hirst
Algebraic Geometry
Machine Learning

We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...