ID: 2012.04656

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

View on ArXiv

Similar papers 2

Machine Learning CICY Threefolds

June 8, 2018

87% Match
Kieran Bull, Yang-Hui He, ... , Mishra Challenger
Algebraic Geometry
Machine Learning

The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...

Find SimilarView on arXiv

Machine Learned Calabi-Yau Metrics and Curvature

November 17, 2022

87% Match
Per Berglund, Giorgi Butbaia, Tristan Hübsch, Vishnu Jejjala, Damián Mayorga Peña, ... , Tan Justin
Machine Learning
Algebraic Geometry
Differential Geometry

Finding Ricci-flat (Calabi-Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi-Yau metric within a given K\"ahler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi-Yau threefolds. Using these Ricci-flat metric approximations for the Cefal\'u family of quartic twofol...

Find SimilarView on arXiv

Getting CICY High

March 7, 2019

87% Match
Kieran Bull, Yang-Hui He, ... , Mishra Challenger
High Energy Physics - Theory

Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...

Find SimilarView on arXiv

Deep learning complete intersection Calabi-Yau manifolds

November 20, 2023

87% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...

Find SimilarView on arXiv

Machine Learning Calabi-Yau Four-folds

September 5, 2020

87% Match
Yang-Hui He, Andre Lukas
Algebraic Geometry
Machine Learning

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

Find SimilarView on arXiv

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

87% Match
Edward Hirst, Tancredi Schettini Gherardini
Algebraic Geometry
Machine Learning

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

Find SimilarView on arXiv

Calabi-Yau Spaces in the String Landscape

June 30, 2020

86% Match
Yang-Hui He
Algebraic Geometry

Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...

Find SimilarView on arXiv

Numerical Metrics for Complete Intersection and Kreuzer-Skarke Calabi-Yau Manifolds

May 26, 2022

86% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
High Energy Physics - Theory

We introduce neural networks to compute numerical Ricci-flat CY metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds at any point in K\"ahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the neural networks is carried out subject to a custom loss functio...

Find SimilarView on arXiv

Numerical Metrics, Curvature Expansions and Calabi-Yau Manifolds

December 23, 2019

86% Match
Wei Cui, James Gray
High Energy Physics - Theory

We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau...

Find SimilarView on arXiv

Machine Learning Regularization for the Minimum Volume Formula of Toric Calabi-Yau 3-folds

October 30, 2023

86% Match
Eugene Choi, Rak-Kyeong Seong
Machine Learning
Algebraic Geometry
Mathematical Physics

We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the ...

Find SimilarView on arXiv