December 8, 2020
Similar papers 2
November 1, 2024
In order to be in control of the $\alpha'$ derivative expansion, geometric string compactifications are understood in the context of a large volume approximation. In this letter, we consider the reduction of these higher derivative terms, and propose an improved estimate on the large volume approximation using numerical Calabi-Yau metrics obtained via machine learning methods. Further to this, we consider the $\alpha'^3$ corrections to numerical Calabi-Yau metrics in the cont...
October 25, 2024
We introduce \texttt{cymyc}, a high-performance Python library for numerical investigation of the geometry of a large class of string compactification manifolds and their associated moduli spaces. We develop a well-defined geometric ansatz to numerically model tensor fields of arbitrary degree on a large class of Calabi-Yau manifolds. \texttt{cymyc} includes a machine learning component which incorporates this ansatz to model tensor fields of interest on these spaces by findi...
January 5, 2020
In these lecture notes, we survey the landscape of Calabi-Yau threefolds, and the use of machine learning to explore it. We begin with the compact portion of the landscape, focusing in particular on complete intersection Calabi-Yau varieties (CICYs) and elliptic fibrations. Non-compact Calabi-Yau manifolds are manifest in Type II superstring theories, they arise as representation varieties of quivers, used to describe gauge theories in the bulk familiar four dimensions. Final...
December 31, 2020
Ricci flat metrics for Calabi-Yau threefolds are not known analytically. In this work, we employ techniques from machine learning to deduce numerical flat metrics for the Fermat quintic, for the Dwork quintic, and for the Tian-Yau manifold. This investigation employs a single neural network architecture that is capable of approximating Ricci flat Kaehler metrics for several Calabi-Yau manifolds of dimensions two and three. We show that measures that assess the Ricci flatness ...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
November 17, 2022
Finding Ricci-flat (Calabi-Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi-Yau metric within a given K\"ahler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi-Yau threefolds. Using these Ricci-flat metric approximations for the Cefal\'u family of quartic twofol...
March 7, 2019
Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...
November 20, 2023
We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...
September 5, 2020
Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...