December 9, 2020
Similar papers 3
November 23, 2020
For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...
November 28, 2007
We study a Szemer\'edi-Trotter type theorem in finite fields. We then use this theorem to obtain an improved sum-product estimate in finite fields.
March 28, 2017
This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...
September 29, 2013
In this paper we provide in $\bFp$ expanding lower bounds for two variables functions $f(x,y)$ in connection with the product set or the sumset. The sum-product problem has been hugely studied in the recent past. A typical result in $\bFp^*$ is the existenceness of $\Delta(\alpha)>0$ such that if $|A|\asymp p^{\alpha}$ then $$ \max(|A+A|,|A\cdot A|)\gg |A|^{1+\Delta(\alpha)}, $$ Our aim is to obtain analogous results for related pairs of two-variable functions $f(x,y)$ and $g...
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
July 7, 2014
The aim of this note is to record a proof that the estimate $$\max{\{|A+A|,|A:A|\}}\gg{|A|^{12/11}}$$ holds for any set $A\subset{\mathbb{F}_q}$, provided that $A$ satisfies certain conditions which state that it is not too close to being a subfield. An analogous result was established in \cite{LiORN}, with the product set $A\cdot{A}$ in the place of the ratio set $A:A$. The sum-ratio estimate here beats the sum-product estimate in \cite{LiORN} by a logarithmic factor, with s...
November 23, 2012
Let $A$ be a finite subset of $\ffield$, the field of Laurent series in $1/t$ over a finite field $\mathbb{F}_q$. We show that for any $\epsilon>0$ there exists a constant $C$ dependent only on $\epsilon$ and $q$ such that $\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}$. In particular such a result is obtained for the rational function field $\mathbb{F}_q(t)$. Identical results are also obtained for finite subsets of the $p$-adic field $\mathbb{Q}_p$ for any prime $p$.
July 29, 2018
Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.
July 20, 2015
We prove that for sets $A, B, C \subset \mathbb{F}_p$ with $|A|=|B|=|C| \leq \sqrt{p}$ and a fixed $0 \neq d \in \mathbb{F}_p$ holds $$ \max(|AB|, |(A+d)C|) \gg|A|^{1+1/26}. $$ In particular, $$ |A(A+1)| \gg |A|^{1 + 1/26} $$ and $$ \max(|AA|, |(A+1)(A+1)|) \gg |A|^{1 + 1/26}. $$ The first estimate improves the bound by Roche-Newton and Jones. In the general case of a field of order $q = p^m$ we obtain similar estimates with the exponent $1+1/559 + o...
February 25, 2018
In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_...