ID: 2012.06316

An improved bound on the sum-product estimate in $\mathbb{F}_{p}$

December 9, 2020

View on ArXiv

Similar papers 2

A sum-product estimate in finite fields, and applications

January 29, 2003

90% Match
Jean Bourgain, Nets Katz, Terence Tao
Combinatorics
Number Theory

Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...

Find SimilarView on arXiv

An improved sum-product inequality in fields of prime order

November 11, 2010

90% Match
Misha Rudnev
Combinatorics
Group Theory

This note improves the best known exponent 1/12 in the prime field sum-product inequality (for small sets) to 1/11, modulo a logarithmic factor.

Find SimilarView on arXiv
Brandon Hanson, Misha Rudnev, ... , Zhelezov Dmitrii
Number Theory
Combinatorics

It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this...

An update on the sum-product problem

May 22, 2020

89% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

Stronger sum-product inequalities for small sets

August 25, 2018

89% Match
Misha Rudnev, George Shakan, Ilya Shkredov
Combinatorics
Number Theory

Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...

Find SimilarView on arXiv

Breaking the 6/5 threshold for sums and products modulo a prime

June 19, 2018

88% Match
G. Shakan, I. D. Shkredov
Combinatorics
Number Theory

Let $A \subset \mathbb{F}_p$ of size at most $p^{3/5}$. We show $$|A+A| + |AA| \gtrsim |A|^{6/5 + c},$$ for $c = 4/305$. Our main tools are the cartesian product point--line incidence theorem of Stevens and de Zeeuw and the theory of higher energies developed by the second author.

Find SimilarView on arXiv

Variations on the Sum-Product Problem

December 22, 2013

88% Match
Brendan Murphy, Oliver Roche-Newton, Ilya D. Shkredov
Combinatorics

This paper considers various formulations of the sum-product problem. It is shown that, for a finite set $A\subset{\mathbb{R}}$, $$|A(A+A)|\gg{|A|^{\frac{3}{2}+\frac{1}{178}}},$$ giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that $$|A(A+A+A+A)|\gg{\frac{|A|^2}{\log{|A|}}},$$ a bound which is optimal up to constant and logarithmic factors. We also prove several new results concerning sum-product estimates and expanders, for example, s...

Find SimilarView on arXiv

A note on sum-product estimates over finite valuation rings

May 12, 2020

88% Match
Duc Hiep Pham
Number Theory

Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisely, we will prove that 1. If $|\mathcal A|\gg q^{r-\frac{1}{3}}$, then $$\max\left\lbrace |\mathcal A+\mathcal A|, |\mathcal A^2+\mathcal A^2|\right\rbrace \gg q^{\frac{r}{2}}|\mathcal A|^{\frac{1}{2}}.$$ 2. If $q^{r-\frac{3}{8}}...

Find SimilarView on arXiv

New sum-product type estimates over finite fields

August 3, 2014

88% Match
Oliver Roche-Newton, Misha Rudnev, Ilya D. Shkredov
Combinatorics

Let $F$ be a field with positive odd characteristic $p$. We prove a variety of new sum-product type estimates over $F$. They are derived from the theorem that the number of incidences between $m$ points and $n$ planes in the projective three-space $PG(3,F)$, with $m\geq n=O(p^2)$, is $$O( m\sqrt{n} + km ),$$ where $k$ denotes the maximum number of collinear planes. The main result is a significant improvement of the state-of-the-art sum-product inequality over fields with p...

Find SimilarView on arXiv

An improved sum-product estimate for general finite fields

January 27, 2011

88% Match
Oliver Roche-Newton
Combinatorics

This paper improves on a sum-product estimate obtained by Katz and Shen for subsets of a finite field whose order is not prime.

Find SimilarView on arXiv