March 8, 2021
Similar papers 2
November 6, 2016
When encountering novel objects, humans are able to infer a wide range of physical properties such as mass, friction and deformability by interacting with them in a goal driven way. This process of active interaction is in the same spirit as a scientist performing experiments to discover hidden facts. Recent advances in artificial intelligence have yielded machines that can achieve superhuman performance in Go, Atari, natural language processing, and complex control problems;...
February 15, 2018
In this paper we investigate the use of MPC-inspired neural network policies for sequential decision making. We introduce an extension to the DAgger algorithm for training such policies and show how they have improved training performance and generalization capabilities. We take advantage of this extension to show scalable and efficient training of complex planning policy architectures in continuous state and action spaces. We provide an extensive comparison of neural network...
May 28, 2018
The reconstruction and analyzation of high energy particle physics data is just as important as the analyzation of the structure in real world networks. In a previous study it was explored how hierarchical clustering algorithms can be combined with kt cluster algorithms to provide a more generic clusterization method. Building on that, this paper explores the possibilities to involve deep learning in the process of cluster computation, by applying reinforcement learning techn...
August 14, 2024
Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) which focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards. An overview of RL is provided in this paper, which discusses its core concepts, methodologies, recent trends, and resources for learning. We provide a detailed explanation of key components of RL such as states, actions, policies, and reward signals so that the reader can build a founda...
October 24, 2017
This paper presents a method for identifying mechanical parameters of robots or objects, such as their mass and friction coefficients. Key features are the use of off-the-shelf physics engines and the adaptation of a Bayesian optimization technique towards minimizing the number of real-world experiments needed for model-based reinforcement learning. The proposed framework reproduces in a physics engine experiments performed on a real robot and optimizes the model's mechanical...
July 27, 2020
Particle physics is a branch of science aiming at discovering the fundamental laws of matter and forces. Graph neural networks are trainable functions which operate on graphs---sets of elements and their pairwise relations---and are a central method within the broader field of geometric deep learning. They are very expressive and have demonstrated superior performance to other classical deep learning approaches in a variety of domains. The data in particle physics are often r...
November 13, 2020
Combining reinforcement learning (RL) and molecular dynamics (MD) simulations, we propose a machine-learning approach (RL$^\ddag$) to automatically unravel chemical reaction mechanisms. In RL$^\ddag$, locating the transition state of a chemical reaction is formulated as a game, where a virtual player is trained to shoot simulation trajectories connecting the reactant and product. The player utilizes two functions, one for value estimation and the other for policy making, to i...
June 15, 2021
Can machine learning help us make better decisions about a changing planet? In this paper, we illustrate and discuss the potential of a promising corner of machine learning known as _reinforcement learning_ (RL) to help tackle the most challenging conservation decision problems. RL is uniquely well suited to conservation and global change challenges for three reasons: (1) RL explicitly focuses on designing an agent who _interacts_ with an environment which is dynamic and unce...
November 20, 2017
The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present results from our work reproducing the results of the DQN paper. We highlight key areas in the i...
July 17, 2017
In this paper, we present a method to control a quadrotor with a neural network trained using reinforcement learning techniques. With reinforcement learning, a common network can be trained to directly map state to actuator command making any predefined control structure obsolete for training. Moreover, we present a new learning algorithm which differs from the existing ones in certain aspects. Our algorithm is conservative but stable for complicated tasks. We found that it i...