March 8, 2021
Similar papers 3
November 23, 2022
Transfer of recent advances in deep reinforcement learning to real-world applications is hindered by high data demands and thus low efficiency and scalability. Through independent improvements of components such as replay buffers or more stable learning algorithms, and through massively distributed systems, training time could be reduced from several days to several hours for standard benchmark tasks. However, while rewards in simulated environments are well-defined and easy ...
October 31, 2023
The discovery process of building new theoretical physics models involves the dual aspect of both fitting to the existing experimental data and satisfying abstract theorists' criteria like beauty, naturalness, etc. We design loss functions for performing both of those tasks with machine learning techniques. We use the Yukawa quark sector as a toy example to demonstrate that the optimization of these loss functions results in true and beautiful models.
May 16, 2024
Observing celestial objects and advancing our scientific knowledge about them involves tedious planning, scheduling, data collection and data post-processing. Many of these operational aspects of astronomy are guided and executed by expert astronomers. Reinforcement learning is a mechanism where we (as humans and astronomers) can teach agents of artificial intelligence to perform some of these tedious tasks. In this paper, we will present a state of the art overview of reinfo...
April 15, 2020
Reinforcement learning (RL) has been demonstrated to have great potential in many applications of scientific discovery and design. Recent work includes, for example, the design of new structures and compositions of molecules for therapeutic drugs. Much of the existing work related to the application of RL to scientific domains, however, assumes that the available state representation obeys the Markov property. For reasons associated with time, cost, sensor accuracy, and gaps ...
March 12, 2019
We present a deep reinforcement learning framework where a machine agent is trained to search for a policy to generate a ground state for the square ice model by exploring the physical environment. After training, the agent is capable of proposing a sequence of local moves to achieve the goal. Analysis of the trained policy and the state value function indicates that the ice rule and loop-closing condition are learned without prior knowledge. We test the trained policy as a s...
January 21, 2024
Theoretical physicists describe nature by i) building a theory model and ii) determining the model parameters. The latter step involves the dual aspect of both fitting to the existing experimental data and satisfying abstract criteria like beauty, naturalness, etc. We use the Yukawa quark sector as a toy example to demonstrate how both of those tasks can be accomplished with machine learning techniques. We propose loss functions whose minimization results in true models that ...
March 22, 2019
We introduce a novel implementation of a reinforcement learning (RL) algorithm which is designed to find an optimal jet grooming strategy, a critical tool for collider experiments. The RL agent is trained with a reward function constructed to optimize the resulting jet properties, using both signal and background samples in a simultaneous multi-level training. We show that the grooming algorithm derived from the deep RL agent can match state-of-the-art techniques used at the ...
March 6, 2022
An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to ...
January 13, 2022
Reinforcement Learning and recently Deep Reinforcement Learning are popular methods for solving sequential decision making problems modeled as Markov Decision Processes. RL modeling of a problem and selecting algorithms and hyper-parameters require careful considerations as different configurations may entail completely different performances. These considerations are mainly the task of RL experts; however, RL is progressively becoming popular in other fields where the resear...
October 19, 2018
We present a framework, which we call Molecule Deep $Q$-Networks (MolDQN), for molecule optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement learning techniques (double $Q$-learning and randomized value functions). We directly define modifications on molecules, thereby ensuring 100\% chemical validity. Further, we operate without pre-training on any dataset to avoid possible bias from the choice of that set. Inspired by problems faced dur...