March 26, 2021
We show that for any finite set $A$ and an arbitrary $\varepsilon>0$ there is $k=k(\varepsilon)$ such that the higher energy ${\mathsf{E}}_k(A)$ is at most $|A|^{k+\varepsilon}$ unless $A$ has a very specific structure. As an application we obtain that any finite subset $A$ of the real numbers or the prime field either contains an additive Sidon--type subset of size $|A|^{1/2+c}$ or a multiplicative Sidon--type subset of size $|A|^{1/2+c}$.
Similar papers 1
August 20, 2023
We prove that every additive set $A$ with energy $E(A)\ge |A|^3/K$ has a subset $A'\subseteq A$ of size $|A'|\ge (1-\varepsilon)K^{-1/2}|A|$ such that $|A'-A'|\le O_\varepsilon(K^{4}|A'|)$. This is, essentially, the largest structured set one can get in the Balog-Szemer\'edi-Gowers theorem.
March 24, 2022
Given $h,g \in \mathbb{N}$, we write a set $X \subseteq \mathbb{Z}$ to be a $B_{h}^{+}[g]$ set if for any $n \in \mathbb{R}$, the number of solutions to the additive equation $n = x_1 + \dots + x_h$ with $x_1, \dots, x_h \in X$ is at most $g$, where we consider two such solutions to be the same if they differ only in the ordering of the summands. We define a multiplicative $B_{h}^{\times}[g]$ set analogously. In this paper, we prove, amongst other results, that there exists s...
March 24, 2021
We give a construction of a set $A \subset \mathbb N$ such that any subset $A' \subset A$ with $|A'| \gg |A|^{2/3}$ is neither an additive nor multiplicative Sidon set. In doing so, we refute a conjecture of Klurman and Pohoata.
February 29, 2008
We show that if A is a set having small subtractive doubling in an abelian group, that is |A-A|< K|A|, then there is a polynomially large subset B of A-A so that the additive energy of B is large than (1/K)^{1 - \epsilon) where epsilon is a positive, universal exponent. (1/37 seems to suffice.)
June 4, 2020
For $h \ge 2$ and an infinite set of positive integers $A$, let $R_{A,h}(n)$ denote the number of solutions of the equation $a_{1} + a_{2} + \dots{} + a_{h} = n, a_{1} \in A, \dots{} ,a_{h} \in A, a_{1} < a_{2} < \dots{} < a_{h}.$ In this paper we prove the existence of a set $A$ formed by perfect powers with almost possible maximal density such that $R_{A,h}(n)$ is bounded by using probabilistic methods.
November 12, 2013
Let $\Gamma$ be an abelian group and $g \geq h \geq 2$ be integers. A set $A \subset \Gamma$ is a $C_h[g]$-set if given any set $X \subset \Gamma$ with $|X| = k$, and any set $\{ k_1 , \dots , k_g \} \subset \Gamma$, at least one of the translates $X+ k_i$ is not contained in $A$. For any $g \geq h \geq 2$, we prove that if $A \subset \{1,2, \dots ,n \}$ is a $C_h[g]$-set in $\mathbb{Z}$, then $|A| \leq (g-1)^{1/h} n^{1 - 1/h} + O(n^{1/2 - 1/2h})$. We show that for any intege...
June 5, 2008
We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$
December 27, 2012
In the paper we develop the method of higher energies. New upper bounds for the additive energies of convex sets, sets A with small |AA| and |A(A+1)| are obtained. We prove new structural results, including higher sumsets, and develop the notion of dual popular difference sets.
May 13, 2014
In the paper we prove that any sumset or difference set has large E_3 energy. Also, we give a full description of families of sets having critical relations between some kind of energies such as E_k, T_k and Gowers norms. In particular, we give criteria for a set to be a 1) set of the form H+L, where H+H is small and L has "random structure", 2) set equals a disjoint union of sets H_j, each H_j has small doubling, 3) set having large subset A' with 2A' is equal to a set with ...
March 13, 2018
Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$