August 4, 2021
Similar papers 5
February 12, 2020
Deep learning networks have been trained to recognize speech, caption photographs and translate text between languages at high levels of performance. Although applications of deep learning networks to real world problems have become ubiquitous, our understanding of why they are so effective is lacking. These empirical results should not be possible according to sample complexity in statistics and non-convex optimization theory. However, paradoxes in the training and effective...
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
November 30, 2021
We use deep neural networks to machine learn correlations between knot invariants in various dimensions. The three-dimensional invariant of interest is the Jones polynomial $J(q)$, and the four-dimensional invariants are the Khovanov polynomial $\text{Kh}(q,t)$, smooth slice genus $g$, and Rasmussen's $s$-invariant. We find that a two-layer feed-forward neural network can predict $s$ from $\text{Kh}(q,-q^{-4})$ with greater than $99\%$ accuracy. A theoretical explanation for ...
October 17, 2018
By using the viewpoint of modern computational algebraic geometry, we explore properties of the optimization landscapes of the deep linear neural network models. After clarifying on the various definitions of "flat" minima, we show that the geometrically flat minima, which are merely artifacts of residual continuous symmetries of the deep linear networks, can be straightforwardly removed by a generalized $L_2$ regularization. Then, we establish upper bounds on the number of i...
May 10, 2017
The Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) has been heavily supporting Machine Learning and Deep Learning research from its foundation in 2012. We have asked six leading ICRI-CI Deep Learning researchers to address the challenge of "Why & When Deep Learning works", with the goal of looking inside Deep Learning, providing insights on how deep networks function, and uncovering key observations on their expressiveness, limitations, and po...
September 3, 2021
The empirical results suggest that the learnability of a neural network is directly related to its size. To mathematically prove this, we borrow a tool in topological algebra: Betti numbers to measure the topological geometric complexity of input data and the neural network. By characterizing the expressive capacity of a neural network with its topological complexity, we conduct a thorough analysis and show that the network's expressive capacity is limited by the scale of its...
May 11, 2022
In this article we present a pheno-inspired classification for the divisor topologies of the favorable Calabi Yau (CY) threefolds with $1 \leq h^{1,1}(CY) \leq 5$ arising from the four-dimensional reflexive polytopes of the Kreuzer-Skarke database. Based on some empirical observations we conjecture that the topologies of the so-called coordinate divisors can be classified into two categories: (i). $\chi_{_h}(D) \geq 1$ with Hodge numbers given by $\{h^{0,0} = 1, \, h^{1,0} = ...
November 2, 2022
We automate the process of machine learning correlations between knot invariants. For nearly 200,000 distinct sets of input knot invariants together with an output invariant, we attempt to learn the output invariant by training a neural network on the input invariants. Correlation between invariants is measured by the accuracy of the neural network prediction, and bipartite or tripartite correlations are sequentially filtered from the input invariant sets so that experiments ...
November 3, 2015
We compute the Hodge numbers for the quotients of complete intersection Calabi-Yau three-folds by groups of orders divisible by 4. We make use of the polynomial deformation method and the counting of invariant K\"ahler classes. The quotients studied here have been obtained in the automated classification of V. Braun. Although the computer search found the freely acting groups, the Hodge numbers of the quotients were not calculated. The freely acting groups, $G$, that arise in...
July 9, 2024
We present new invariant machine learning models that approximate the Ricci-flat metric on Calabi-Yau (CY) manifolds with discrete symmetries. We accomplish this by combining the $\phi$-model of the cymetric package with non-trainable, $G$-invariant, canonicalization layers that project the $\phi$-model's input data (i.e. points sampled from the CY geometry) to the fundamental domain of a given symmetry group $G$. These $G$-invariant layers are easy to concatenate, provided o...