August 4, 2021
Similar papers 4
We propose a machine-learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordstrom invariant of the natural $G_2$-structure of the $7$-dimensional link of a weighted projective Calabi-Yau $3$-fold hypersurface singularity, for each of the 7555 possible $\mathbb{P}^4(\textbf{w})$ projective spaces. These topo...
December 8, 2020
We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...
March 7, 2013
We present an exhaustive, constructive, classification of the Calabi-Yau four-folds which can be described as complete intersections in products of projective spaces. A comprehensive list of 921,497 configuration matrices which represent all topologically distinct types of complete intersection Calabi-Yau four-folds is provided and can be downloaded at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds/index.html . The manifolds have non-negative Euler character...
December 9, 2021
We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...
December 20, 2021
We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.
November 26, 2018
Among many unsolved puzzles in theories of Deep Neural Networks (DNNs), there are three most fundamental challenges that highly demand solutions, namely, expressibility, optimisability, and generalisability. Although there have been significant progresses in seeking answers using various theories, e.g. information bottleneck theory, sparse representation, statistical inference, Riemannian geometry, etc., so far there is no single theory that is able to provide solutions to al...
July 6, 2016
We present a general method for computing Hodge numbers for Calabi-Yau manifolds realised as discrete quotients of complete intersections in products of projective spaces. The method relies on the computation of equivariant cohomologies and is illustrated for several explicit examples. In this way, we compute the Hodge numbers for all discrete quotients obtained in Braun's classification arXiv:1003.3235.
November 2, 2021
We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...
January 21, 2024
Calabi-Yau links are specific $S^1$-fibrations over Calabi-Yau manifolds, when the link is 7-dimensional they exhibit both Sasakian and G2 structures. In this invited contribution to the DANGER proceedings, previous work exhaustively computing Calabi-Yau links and selected topological properties is summarised. Machine learning of these properties inspires new conjectures about their computation, as well as the respective Gr\"obner bases.
November 5, 2014
Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, i...