October 10, 2021
Gene expression is a fundamental process in a living system. The small RNAs (sRNAs) is widely observed as a global regulator in gene expression. The inherent nonlinearity in this regulatory process together with the bursty production of messenger RNA (mRNA), sRNA and protein make the exact solution for this stochastic process intractable. This is particularly the case when quantifying the protein noise level, which has great impact on multiple cellular processes. Here we propose an approximate yet reasonably accurate solution for the gene expression noise with infrequent burst and strong regulation by sRNAs. This analytical solution allows us to better analyze the noise and stochastic deviation of protein level. We find that the regulation amplifies the noise, reduces the protein level. The stochasticity in the regulation generates more proteins than what if the stochasticity is removed from the system. The sRNA level is most important to the relationship between the noise and stochastic deviation. The results provide analytical tools for more general studies of gene expression and strengthen our quantitative understandings of post-transcriptional regulation in controlling gene expression processes.
Similar papers 1
February 22, 2011
The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are disti...
September 2, 2008
Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in prokaryotes. sRNAs act post-transcriptionally via complementary pairing with target mRNAs to regulate protein expression. We use a quantitative approach to compare and contrast sRNAs with conventional transcription factors (TFs) to better understand the advantages of each form of regulation. In particular, we calculate the steady-state behavior, noise properties, frequency-dependent gain (amplificati...
January 31, 2011
A wealth of new research has highlighted the critical roles of small RNAs (sRNAs) in diverse processes such as quorum sensing and cellular responses to stress. The pathways controlling these processes often have a central motif comprising of a master regulator protein whose expression is controlled by multiple sRNAs. However, the regulation of stochastic gene expression of a single target gene by multiple sRNAs is currently not well understood. To address this issue, we analy...
October 13, 2009
The processes, resulting in the transcription of RNA, are intrinsically noisy. It was observed experimentally that the synthesis of mRNA molecules is driven by short, burst-like, events. An accurate prediction of the protein level often requires one to take these fluctuations into account. Here, we consider the stochastic model of gene expression regulated by small RNAs. Small RNA post-transcriptional regulation is achieved by base-pairing with mRNA. We show that in a strong ...
January 11, 2011
Regulation of intrinsic noise in gene expression is essential for many cellular functions. Correspondingly, there is considerable interest in understanding how different molecular mechanisms of gene expression impact variations in protein levels across a population of cells. In this work, we analyze a stochastic model of bursty gene expression which considers general waiting-time distributions governing arrival and decay of proteins. By mapping the system to models analyzed i...
June 21, 2010
The intrinsic stochasticity of gene expression can lead to large variability of protein levels across a population of cells. Variability (or noise) in protein distributions can be modulated by cellular mechanisms of gene regulation; in particular, there is considerable interest in understanding the role of post-transcriptional regulation. To address this issue, we propose and analyze a stochastic model for post-transcriptional regulation of gene expression. The analytical sol...
August 12, 2015
We present a theoretical framework to analyze the dynamics of gene expression with stochastic bursts. Beginning with an individual-based model which fully accounts for the messenger RNA (mRNA) and protein populations, we propose a novel expansion of the master equation for the joint process. The resulting coarse-grained model reduces the dimensionality of the system, describing only the protein population while fully accounting for the effects of discrete and fluctuating mRNA...
February 27, 2016
Inside individual cells, expression of genes is stochastic across organisms ranging from bacterial to human cells. A ubiquitous feature of stochastic expression is burst-like synthesis of gene products, which drives considerable intercellular variability in protein levels across an isogenic cell population. One common mechanism by which cells control such stochasticity is negative feedback regulation, where a protein inhibits its own synthesis. For a single gene that is expre...
August 3, 2015
The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling, and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologicall...
February 19, 2011
Regulatory genes called small RNAs (sRNAs) are known to play critical roles in cellular responses to changing environments. For several sRNAs, regulation is effected by coupled stoichiometric degradation with messenger RNAs (mRNAs). The nonlinearity inherent in this regulatory scheme indicates that exact analytical solutions for the corresponding stochastic models are intractable. Here, we present a variational approach to analyze a well-studied stochastic model for regulatio...