October 10, 2021
Similar papers 2
September 11, 2014
Stochasticity in gene expression can give rise to fluctuations in protein levels and lead to phenotypic variation across a population of genetically identical cells. Recent experiments indicate that bursting and feedback mechanisms play important roles in controlling noise in gene expression and phenotypic variation. A quantitative understanding of the impact of these factors requires analysis of the corresponding stochastic models. However, for stochastic models of gene expr...
July 12, 2010
The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of mRNA fluctuations ('Poisson' and 'Telegraph' processes) have been proposed in stochastic models of gene expression. Both Poisson and Telegraph scenario models explain experimental observations of noise in protein levels in terms of 'bursts' of protein expression. Correspondingly, there is considerable int...
March 10, 2016
Over the last several decades it has been increasingly recognized that stochastic processes play a central role in transcription. Though many stochastic effects have been explained, the source of transcriptional bursting (one of the most well-known sources of stochasticity) has continued to evade understanding. Recent results have pointed to mechanical feedback as the source of transcriptional bursting but a reconciliation of this perspective with preexisting views of transcr...
January 9, 2013
This paper considers the behavior of discrete and continuous mathematical models for gene expression in the presence of transcriptional/translational bursting. We treat this problem in generality with respect to the distribution of the burst size as well as the frequency of bursting, and our results are applicable to both inducible and repressible expression patterns in prokaryotes and eukaryotes. We have given numerous examples of the applicability of our results, especially...
September 23, 2016
Gene expression is inherently a noisy process which manifests as cell-to-cell variability in time evolution of proteins. Consequently, events that trigger at critical threshold levels of regulatory proteins exhibit stochasticity in their timing. An important contributor to the noise in gene expression is translation bursts which correspond to randomness in number of proteins produced in a single mRNA lifetime. Modeling timing of an event as a first-passage time (FPT) problem,...
July 23, 2009
Due to the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A slow transport rate smoothes out fluctuations at the output end and minimizes the impact of bursting on the downstream cellular...
November 12, 2012
MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs). Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find...
December 30, 2014
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Bursting in gene expression is known to impact cell-fate in diverse systems ranging from latency in HIV-1 viral infections to cellular differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for com...
January 8, 2020
A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fluctuations in protein numbers due to reversible protein-promoter binding can be ignored. Here we derive an alternative model that takes into account these fluctuations and hence can be used to study low protein number effects. The...
December 14, 2011
In this article we demonstrate that the so-called bursting production of molecular species during gene expression may be an artifact caused by low time resolution in experimental data collection and not an actual burst in production. We reach this conclusion through an analysis of a two-stage and binary model for gene expression, and demonstrate that in the limit when mRNA degradation is much faster than protein degradation they are equivalent. The negative binomial distribut...