May 29, 2024
We numerically study whether there exist nowhere vanishing harmonic $1$-forms on the real locus of some carefully constructed examples of Calabi-Yau manifolds, which would then give rise to potentially new examples of $G_2$-manifolds and an explicit description of their metrics. We do this in two steps: first, we use a neural network to compute an approximate Calabi-Yau metric on each manifold. Second, we use another neural network to compute an approximately harmonic $1$-for...
January 2, 2020
Generative models in deep learning allow for sampling probability distributions that approximate data distributions. We propose using generative models for making approximate statistical predictions in the string theory landscape. For vacua admitting a Lagrangian description this can be thought of as learning random tensor approximations of couplings. As a concrete proof-of-principle, we demonstrate in a large ensemble of Calabi-Yau manifolds that Kahler metrics evaluated at ...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
September 21, 2022
Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
April 22, 2024
Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data. It is known that data passing through a trained DNN classifier undergoes a series of geometric and topological simplifications. While some progress has been made toward understanding these transformations in neural networks with smooth activation functions, an understanding in the more general setting of non-smooth activation functions, such as the rectified linear unit (ReLU), ...
March 7, 2019
Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...
February 23, 1997
These lectures are devoted to introducing some of the basic features of quantum geometry that have been emerging from compactified string theory over the last couple of years. The developments discussed include new geometric features of string theory which occur even at the classical level as well as those which require non-perturbative effects. These lecture notes are based on an evolving set of lectures presented at a number of schools but most closely follow a series of se...
April 17, 2022
The goal of identifying the Standard Model of particle physics and its extensions within string theory has been one of the principal driving forces in string phenomenology. Recently, the incorporation of artificial intelligence in string theory and certain theoretical advancements have brought to light unexpected solutions to mathematical hurdles that have so far hindered progress in this direction. In this review we focus on model building efforts in the context of the $E_8\...
April 18, 2019
We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...