ID: 2111.01436

Learning Size and Shape of Calabi-Yau Spaces

November 2, 2021

View on ArXiv

Similar papers 2

Numerical Metrics for Complete Intersection and Kreuzer-Skarke Calabi-Yau Manifolds

May 26, 2022

87% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
High Energy Physics - Theory

We introduce neural networks to compute numerical Ricci-flat CY metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds at any point in K\"ahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the neural networks is carried out subject to a custom loss functio...

Find SimilarView on arXiv

Computation of Quark Masses from String Theory

February 2, 2024

86% Match
Andrei Constantin, Cristofero S. Fraser-Taliente, Thomas R. Harvey, ... , Ovrut Burt
High Energy Physics - Theory

We present a numerical computation, based on neural network techniques, of the physical Yukawa couplings in a heterotic string theory compactification on a smooth Calabi-Yau threefold with non-standard embedding. The model belongs to a large class of heterotic line bundle models that have previously been identified and whose low-energy spectrum precisely matches that of the MSSM plus fields uncharged under the Standard Model group. The relevant quantities for the calculation,...

Find SimilarView on arXiv

Calabi-Yau Spaces in the String Landscape

June 30, 2020

86% Match
Yang-Hui He
Algebraic Geometry

Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...

Find SimilarView on arXiv

Calabi-Yau metrics and string compactification

March 10, 2015

86% Match
Michael R. Douglas
Differential Geometry

Yau proved an existence theorem for Ricci-flat K\"ahler metrics in the 1970's, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.

Find SimilarView on arXiv
Yang-Hui He, Shailesh Lal, M. Zaid Zaz
Algebraic Geometry

We propose a novel approach toward the vacuum degeneracy problem of the string landscape, by finding an efficient measure of similarity amongst compactification scenarios. Using a class of some one million Calabi-Yau manifolds as concrete examples, the paradigm of few-shot machine-learning and Siamese Neural Networks represents them as points in R(3) where the similarity score between two manifolds is the Euclidean distance between their R(3) representatives. Using these meth...

Lectures on the Calabi-Yau Landscape

January 5, 2020

85% Match
Jiakang Bao, Yang-Hui He, ... , Pietromonaco Stephen
Mathematical Physics

In these lecture notes, we survey the landscape of Calabi-Yau threefolds, and the use of machine learning to explore it. We begin with the compact portion of the landscape, focusing in particular on complete intersection Calabi-Yau varieties (CICYs) and elliptic fibrations. Non-compact Calabi-Yau manifolds are manifest in Type II superstring theories, they arise as representation varieties of quivers, used to describe gauge theories in the bulk familiar four dimensions. Final...

Find SimilarView on arXiv

Machine learning for complete intersection Calabi-Yau manifolds: a methodological study

July 30, 2020

85% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

Find SimilarView on arXiv

Numerical Metrics, Curvature Expansions and Calabi-Yau Manifolds

December 23, 2019

85% Match
Wei Cui, James Gray
High Energy Physics - Theory

We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau...

Find SimilarView on arXiv

Machine Learning of Calabi-Yau Volumes

June 11, 2017

85% Match
Daniel Krefl, Rak-Kyeong Seong
Algebraic Geometry

We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...

Find SimilarView on arXiv

Universes as Big Data

November 29, 2020

85% Match
Yang-Hui He
Algebraic Geometry
History and Philosophy of Ph...

We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress i...