ID: 2111.04761

The World in a Grain of Sand: Condensing the String Vacuum Degeneracy

November 8, 2021

View on ArXiv
Yang-Hui He, Shailesh Lal, M. Zaid Zaz
High Energy Physics - Theory
High Energy Physics - Phenom...
Mathematics
Algebraic Geometry

We propose a novel approach toward the vacuum degeneracy problem of the string landscape, by finding an efficient measure of similarity amongst compactification scenarios. Using a class of some one million Calabi-Yau manifolds as concrete examples, the paradigm of few-shot machine-learning and Siamese Neural Networks represents them as points in R(3) where the similarity score between two manifolds is the Euclidean distance between their R(3) representatives. Using these methods, we can compress the search space for exceedingly rare manifolds to within one percent of the original data by training on only a few hundred data points. We also demonstrate how these methods may be applied to characterize `typicality' for vacuum representatives.

Similar papers 1

Universes as Big Data

November 29, 2020

87% Match
Yang-Hui He
Algebraic Geometry
History and Philosophy of Ph...

We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress i...

Yang-Hui He
Algebraic Geometry
Mathematical Physics
Machine Learning

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

86% Match
Yang-Hui He
Algebraic Geometry
Machine Learning

We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...

Hajime Otsuka, Kenta Takemoto
High Energy Physics - Theory
High Energy Physics - Phenom...

We apply deep-learning techniques to the string landscape, in particular, $SO(32)$ heterotic string theory on simply-connected Calabi-Yau threefolds with line bundles. It turns out that three-generation models cluster in particular islands specified by deep autoencoder networks and k-means++ clustering. Especially, we explore mutual relations between model parameters and the cluster with densest three-generation models (called "3-generation island"). We find that the 3-genera...

Magdalena Larfors, Andre Lukas, ... , Schneider Robin
Machine Learning

We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...

Andrei Constantin
Artificial Intelligence

The goal of identifying the Standard Model of particle physics and its extensions within string theory has been one of the principal driving forces in string phenomenology. Recently, the incorporation of artificial intelligence in string theory and certain theoretical advancements have brought to light unexpected solutions to mathematical hurdles that have so far hindered progress in this direction. In this review we focus on model building efforts in the context of the $E_8\...

James Halverson, Cody Long
High Energy Physics - Theory

Generative models in deep learning allow for sampling probability distributions that approximate data distributions. We propose using generative models for making approximate statistical predictions in the string theory landscape. For vacua admitting a Lagrangian description this can be thought of as learning random tensor approximations of couplings. As a concrete proof-of-principle, we demonstrate in a large ensemble of Calabi-Yau manifolds that Kahler metrics evaluated at ...

Stefano Lanza
Machine Learning

The landscape of low-energy effective field theories stemming from string theory is too vast for a systematic exploration. However, the meadows of the string landscape may be fertile ground for the application of machine learning techniques. Employing neural network learning may allow for inferring novel, undiscovered properties that consistent theories in the landscape should possess, or checking conjectural statements about alleged characteristics thereof. The aim of this w...

Yang-Hui He
Algebraic Geometry

Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...

Rehan Deen, Yang-Hui He, ... , Lukas Andre
Algebraic Geometry
Machine Learning

We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks are capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral asymmetry from random models without these properties. The same dis...