November 29, 2020
We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress in machine-learning applied to the sifting through of possible universes from compactification, as well as wider problems in geometrical engineering of quantum field theories. In parallel, we discuss the programme in machine-learning mathematical structures and address the tantalizing question of how it helps doing mathematics, ranging from mathematical physics, to geometry, to representation theory, to combinatorics, and to number theory.
Similar papers 1
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...
June 8, 2017
We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...
March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
April 17, 2022
The goal of identifying the Standard Model of particle physics and its extensions within string theory has been one of the principal driving forces in string phenomenology. Recently, the incorporation of artificial intelligence in string theory and certain theoretical advancements have brought to light unexpected solutions to mathematical hurdles that have so far hindered progress in this direction. In this review we focus on model building efforts in the context of the $E_8\...
June 30, 2020
Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...
January 5, 2020
In these lecture notes, we survey the landscape of Calabi-Yau threefolds, and the use of machine learning to explore it. We begin with the compact portion of the landscape, focusing in particular on complete intersection Calabi-Yau varieties (CICYs) and elliptic fibrations. Non-compact Calabi-Yau manifolds are manifest in Type II superstring theories, they arise as representation varieties of quivers, used to describe gauge theories in the bulk familiar four dimensions. Final...
July 3, 2017
We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank ...
February 12, 2022
We review the recent programme of using machine-learning to explore the landscape of mathematical problems. With this paradigm as a model for human intuition - complementary to and in contrast with the more formalistic approach of automated theorem proving - we highlight some experiments on how AI helps with conjecture formulation, pattern recognition and computation.
With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and non-compact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its princip...