December 1, 2021
Similar papers 3
November 14, 2020
Recent results in adaptive matter revived the interest in the implementation of novel devices able to perform brain-like operations. Here we introduce a training algorithm for a memristor network which is inspired in previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation o...
August 21, 2022
The advent of deep learning has resulted in a number of applications which have transformed the landscape of the research area in which it has been applied. However, with an increase in popularity, the complexity of classical deep neural networks has increased over the years. As a result, this has leads to considerable problems during deployment on devices with space and time constraints. In this work, we perform a review of the present advancements in non-volatile memory and...
December 5, 2017
Deep 'Analog Artificial Neural Networks' (ANNs) perform complex classification problems with remarkably high accuracy. However, they rely on humongous amount of power to perform the calculations, veiling the accuracy benefits. The biological brain on the other hand is significantly more powerful than such networks and consumes orders of magnitude less power, indicating us about some conceptual mismatch. Given that the biological neurons communicate using energy efficient trai...
March 11, 2024
Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry. To combat device non-linearity and asymmetry, we ...
March 2, 2022
We present a fully memristive spiking neural network (MSNN) consisting of physically-realizable memristive neurons and memristive synapses to implement an unsupervised Spiking Time Dependent Plasticity (STDP) learning rule. The system is fully memristive in that both neuronal and synaptic dynamics can be realized by using memristors. The neuron is implemented using the SPICE-level memristive integrate-and-fire (MIF) model, which consists of a minimal number of circuit element...
May 11, 2023
In conventional digital computers, data and information are represented in binary form and encoded in the steady states of transistors. They are then processed in a quasi-static way. However, with transistors approaching their physical limits and the von Neumann bottleneck, the rate of improvement in computing efficiency has slowed down. Therefore, drawing inspiration from the dynamic and adaptive properties of biological systems, research in neural morphology computing has g...
April 1, 2020
This article proposes a general approach to the simulation and design of a multilayer perceptron (MLP) network on the basis of cross-bar arrays of metal-oxide memristive devices. The proposed approach uses the ANNM theory, tolerance theory, simulation methodology and experiment design. The tolerances analysis and synthesis process is performed for the ANNM hardware implementation on the basis of two arrays of memristive microdevices in the original 16x16 cross-bar topology be...
July 13, 2018
Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility features, they are characterized by computationally relevant physical properties, such as state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a sp...
December 13, 2021
Recent years have seen a rapid rise of artificial neural networks being employed in a number of cognitive tasks. The ever-increasing computing requirements of these structures have contributed to a desire for novel technologies and paradigms, including memristor-based hardware accelerators. Solutions based on memristive crossbars and analog data processing promise to improve the overall energy efficiency. However, memristor nonidealities can lead to the degradation of neural ...
March 1, 2017
A memristor is a two-terminal nanodevice that its properties attract a wide community of researchers from various domains such as physics, chemistry, electronics, computer and neuroscience.The simple structure for manufacturing, small scalability, nonvolatility and potential of using inlow power platforms are outstanding characteristics of this emerging nanodevice. In this report,we review a brief literature of memristor from mathematic model to the physical realization. Wedi...