December 1, 2021
Similar papers 4
January 23, 2019
Spintronic nanodevices have ultrafast nonlinear dynamic and recurrence behaviors on a nanosecond scale that promises to enable spintronic reservoir computing (RC) system. Here two physical RC systems based on a single magnetic skyrmion memristor (MSM) and 24 spin-torque nano-oscillators (STNOs) were proposed and modeled to process image classification task and nonlinear dynamic system prediction, respectively. Based on our micromagnetic simulation results on the nonlinear res...
July 22, 2019
With the development of research on memristor, memristive neural networks (MNNs) have become a hot research topic recently. Because memristor can mimic the spike timing-dependent plasticity (STDP), the research on STDP based MNNs is rapidly increasing. However, although state-of-the-art works on STDP based MNNs have many applications such as pattern recognition, STDP mechanism brings relatively complex hardware framework and low processing speed, which block MNNs' hardware re...
October 14, 2023
Networks composed of nanoscale memristive components, such as nanowire and nanoparticle networks, have recently received considerable attention because of their potential use as neuromorphic devices. In this study, we explore the connection between ergodicity in memristive and nanowire networks, showing that the performance of reservoir devices improves when these networks are tuned to operate at the edge between two global stability points. The lack of ergodicity is associat...
August 15, 2018
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method su...
June 22, 2023
Memristive reservoirs draw inspiration from a novel class of neuromorphic hardware known as nanowire networks. These systems display emergent brain-like dynamics, with optimal performance demonstrated at dynamical phase transitions. In these networks, a limited number of electrodes are available to modulate system dynamics, in contrast to the global controllability offered by neuromorphic hardware through random access memories. We demonstrate that the learn-to-learn framewor...
January 29, 2022
Neuromorphic engineering has led to the necessary process of rethinking of how we process and integrate information, analyze data, and use the resulting insights to improve computation and avoid the current high power and latency of Artificial Intelligence (AI) hardware. Current neuromorphic processors are, however, limited by digital technologies, which cannot reproduce the abilities of biological neural computation in terms of power, latency and area cost. In this paper, we...
June 14, 2019
Reservoir computing is a subfield of machine learning in which a complex system, or 'reservoir,' uses complex internal dynamics to non-linearly project an input into a higher-dimensional space. A single trainable output layer then inspects this high-dimensional space for features relevant to perform the given task, such as a classification. Initially, reservoirs were often constructed from recurrent neural networks, but reservoirs constructed from many different elements have...
April 27, 2024
Reservoir computing is a brain-inspired machine learning framework for processing temporal data by mapping inputs into high-dimensional spaces. Physical reservoir computers (PRCs) leverage native fading memory and nonlinearity in physical substrates, including atomic switches, photonics, volatile memristors, and, recently, memcapacitors, to achieve efficient high-dimensional mapping. Traditional PRCs often consist of homogeneous device arrays, which rely on input encoding met...
May 8, 2018
This paper presents a survey of the currently available hardware designs for implementation of the human cortex inspired algorithm, Hierarchical Temporal Memory (HTM). In this review, we focus on the state of the art advances of memristive HTM implementation and related HTM applications. With the advent of edge computing, HTM can be a potential algorithm to implement on-chip near sensor data processing. The comparison of analog memristive circuit implementations with the digi...
May 30, 2018
Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameters, however, have a bottleneck in computing power resulting from limited memory capacity and data communication bandwidth. Here we demonstrate experimentally that LSTM can be implemented with a memristor crossbar, which has a small...