January 16, 2022
Similar papers 5
We apply a recent one-dimensional algorithm for predicting random close packing fractions of polydisperse hard spheres [Farr and Groot, J. Chem. Phys. 133, 244104 (2009)] to the case of lognormal distributions of sphere sizes and mixtures of such populations. We show that the results compare well to two much slower algorithms for directly simulating spheres in three dimensions, and show that the algorithm is fast enough to tackle inverse problems in particle packing: designin...
June 6, 2010
We develop a model to describe the properties of random assemblies of polydisperse hard spheres. We show that the key features to describe the system are (i) the dependence between the free volume of a sphere and the various coordination numbers between the species, and (ii) the dependence of the coordination numbers with the concentration of species; quantities that are calculated analytically. The model predicts the density of random close packing and random loose packing o...
August 15, 2008
The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 60's. This problem finds applications spanning from the mathematician's pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack ...
August 21, 2015
Obtaining general relations between macroscopic properties of random assemblies, such as density, and the microscopic properties of their constituent particles, such as shape, is a foundational challenge in the study of amorphous materials. By leveraging existing understanding of the random packing of spherical particles, we estimate the random packing density for all sufficiently spherical shapes. Our method uses the ensemble of random packing configurations of spheres as a ...
October 31, 2013
A set of $N$ points is chosen randomly in a $D$-dimensional volume $V=a^D$, with periodic boundary conditions. For each point $i$, its distance $d_i$ is found to its nearest neighbour. Then, the maximal value is found, $d_{max}=max(d_i, i=1,...,N)$. Our numerical calculations indicate, that when the density $N/V$=const, $d_{max}$ scales with the linear system size as $d^2_{max}\propto a^\phi$, with $\phi=0.24\pm0.04$ for $D=1,2,3,4$.
September 2, 2010
The isostatic jamming limit of frictionless spherical particles from Edwards' statistical mechanics [Song \emph{et al.}, Nature (London) {\bf 453}, 629 (2008)] is generalized to arbitrary dimension $d$ using a liquid-state description. The asymptotic high-dimensional behavior of the self-consistent relation is obtained by saddle-point evaluation and checked numerically. The resulting random close packing density scaling $\phi\sim d\,2^{-d}$ is consistent with that of other ap...
August 15, 2008
We investigate the existence of random close and random loose packing limits in two-dimensional packings of monodisperse hard disks. A statistical mechanics approach-- based on several approximations to predict the probability distribution of volumes-- suggests the existence of the limiting densities of the jammed packings according to their coordination number and compactivity. This result has implications for the understanding of disordered states in the disk packing proble...
September 12, 2013
We study, via the replica method of disordered systems, the packing problem of hard-spheres with a square-well attractive potential when the space dimensionality, d, becomes infinitely large. The phase diagram of the system exhibits reentrancy of the liquid-glass transition line, two distinct glass states and a glass-to-glass transition, much similar to what has been previously obtained by Mode-Coupling Theory, numerical simulations and experiments. The presence of the phase ...
September 23, 2009
The nature of randomness in disordered packings of frictional and frictionless spheres is investigated using theory and simulations of identical spherical grains. The entropy of the packings is defined through the force and volume ensemble of jammed matter and shown difficult to calculate analytically. A mesoscopic ensemble of isostatic states is then utilized in an effort to predict the entropy through the defnition of a volume function dependent on the coordination number. ...
May 22, 2016
Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density phi, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wi...