February 4, 2022
Similar papers 5
June 16, 2022
We introduce a unified framework for group equivariant networks on homogeneous spaces derived from a Fourier perspective. We consider tensor-valued feature fields, before and after a convolutional layer. We present a unified derivation of kernels via the Fourier domain by leveraging the sparsity of Fourier coefficients of the lifted feature fields. The sparsity emerges when the stabilizer subgroup of the homogeneous space is a compact Lie group. We further introduce a nonline...
August 8, 2023
Designing models that are both expressive and preserve known invariances of tasks is an increasingly hard problem. Existing solutions tradeoff invariance for computational or memory resources. In this work, we show how to leverage randomness and design models that are both expressive and invariant but use less resources. Inspired by randomized algorithms, our key insight is that accepting probabilistic notions of universal approximation and invariance can reduce our resource ...
January 17, 2024
Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordin...
January 12, 2023
We introduce Equivariant Isomorphic Networks (EquIN) -- a method for learning representations that are equivariant with respect to general group actions over data. Differently from existing equivariant representation learners, EquIN is suitable for group actions that are not free, i.e., that stabilize data via nontrivial symmetries. EquIN is theoretically grounded in the orbit-stabilizer theorem from group theory. This guarantees that an ideal learner infers isomorphic repres...
April 19, 2021
Symmetries and equivariance are fundamental to the generalization of neural networks on domains such as images, graphs, and point clouds. Existing work has primarily focused on a small number of groups, such as the translation, rotation, and permutation groups. In this work we provide a completely general algorithm for solving for the equivariant layers of matrix groups. In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons...
April 27, 2023
We present a novel application of category theory for deep learning. We show how category theory can be used to understand and work with the linear layer functions of group equivariant neural networks whose layers are some tensor power space of $\mathbb{R}^{n}$ for the groups $S_n$, $O(n)$, $Sp(n)$, and $SO(n)$. By using category theoretic constructions, we build a richer structure that is not seen in the original formulation of these neural networks, leading to new insights....
April 10, 2020
Group equivariant neural networks have been explored in the past few years and are interesting from theoretical and practical standpoints. They leverage concepts from group representation theory, non-commutative harmonic analysis and differential geometry that do not often appear in machine learning. In practice, they have been shown to reduce sample and model complexity, notably in challenging tasks where input transformations such as arbitrary rotations are present. We begi...
March 28, 2018
Group equivariant and steerable convolutional neural networks (regular and steerable G-CNNs) have recently emerged as a very effective model class for learning from signal data such as 2D and 3D images, video, and other data where symmetries are present. In geometrical terms, regular G-CNNs represent data in terms of scalar fields ("feature channels"), whereas the steerable G-CNN can also use vector or tensor fields ("capsules") to represent data. In algebraic terms, the feat...
November 25, 2022
Building models that comply with the invariances inherent to different domains, such as invariance under translation or rotation, is a key aspect of applying machine learning to real world problems like molecular property prediction, medical imaging, protein folding or LiDAR classification. For the first time, we study how the invariances of a model can be leveraged to provably guarantee the robustness of its predictions. We propose a gray-box approach, enhancing the powerful...
June 18, 2021
Many applications require the robustness, or ideally the invariance, of a neural network to certain transformations of input data. Most commonly, this requirement is addressed by either augmenting the training data, using adversarial training, or defining network architectures that include the desired invariance automatically. Unfortunately, the latter often relies on the ability to enlist all possible transformations, which make such approaches largely infeasible for infinit...