March 3, 2022
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollob\'as, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
Similar papers 1
March 25, 2022
In this paper we study monotone cellular automata in $d$ dimensions. We develop a general method for bounding the growth of the infected set when the initial configuration is chosen randomly, and then use this method to prove a lower bound on the critical probability for percolation that is sharp up to a constant factor in the exponent for every 'critical' model. This is one of three papers that together confirm the Universality Conjecture of Bollob\'as, Duminil-Copin, Morris...
April 18, 2012
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}^d$ with random initial configurations. Formally, we are given a set $\mathcal{U}=\{X_1,\dots,X_m\}$ of finite subsets of $\mathbb{Z}^d\setminus\{\mathbf{0}\}$, and an initial set $A_0\subset\mathbb{Z}^d$ of `infected' sites, which we take to be random according to the product measure with density $p$. At time $t\in\mathbb{N}$, the...
November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \g...
March 25, 2022
In many interacting particle systems, relaxation to equilibrium is thought to occur via the growth of 'droplets', and it is a question of fundamental importance to determine the critical length at which such droplets appear. In this paper we construct a mechanism for the growth of droplets in an arbitrary finite-range monotone cellular automaton on a $d$-dimensional lattice. Our main application is an upper bound on the critical probability for percolation that is sharp up to...
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
October 1, 2021
We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when init...
June 25, 2014
We study the class of monotone, two-state, deterministic cellular automata, in which sites are activated (or 'infected') by certain configurations of nearby infected sites. These models have close connections to statistical physics, and several specific examples have been extensively studied in recent years by both mathematicians and physicists. This general setting was first studied only recently, however, by Bollob\'as, Smith and Uzzell, who showed that the family of all su...
December 25, 2013
This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by ${\mathcal{U}}(x)$ the neighbourhood of site $x$, the transition probability is $T(\eta_x = 1 | \eta_{{\mathcal{U}}(x)}) = 0$ if $\eta_{{\mathcal{U}}(x)}= \mathbf{0}$ or $p$ otherwise, $\forall x \in \mathbb{Z}$. For any $\mathcal{U}$ there exists a non-trivial critical probability $p_c({\mathcal{U}})$ that separates a phase with an absorbing stat...
March 30, 2022
In this note we provide an alternative proof of the fact that subcritical bootstrap percolation models have a positive critical probability in any dimension. The proof relies on a recent extension of the classical framework of Toom. This approach is not only simpler than the original multi-scale renormalisation proof of the result in two and more dimensions, but also gives significantly better bounds. As a byproduct, we improve the best known bounds for the stability threshol...
December 24, 1997
Dynamic properties of a one-dimensional probabilistic cellular automaton are studied by monte-carlo simulation near a critical point which marks a second-order phase transition from a active state to a effectively unique absorbing state. Values obtained for the dynamic critical exponents indicate that the transition belongs to the universality class of directed percolation. Finally the model is compared with a previously studied one to show that a difference in the nature of ...