May 26, 2022
Similar papers 4
December 11, 2006
We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics, and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results.
January 27, 2021
We develop an algebro-geometric formulation for neural networks in machine learning using the moduli space of framed quiver representations. We find natural Hermitian metrics on the universal bundles over the moduli which are compatible with the GIT quotient construction by the general linear group, and show that their Ricci curvatures give a K\"ahler metric on the moduli. Moreover, we use toric moment maps to construct activation functions, and prove the universal approximat...
September 22, 2017
In the present paper we provide a description of complete Calabi-Yau metrics on the canonical bundle of generalized complex flag manifolds. By means of Lie theory we give an explicit description of complete Ricci-flat K\"ahler metrics obtained through the Calabi ansatz technique. We use this approach to provide several explicit examples of noncompact complete Calabi-Yau manifolds, these examples include canonical bundles of non-toric flag manifolds (e.g. Grassmann manifolds a...
December 20, 2007
We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete intersections and the quotient of a Schoen manifold with Z_3 x Z_3 fundamental group that was previously used to construct a heterotic standard model. Various numerical investig...
March 7, 2019
Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...
May 9, 2021
A very popular model in machine learning is the feedforward neural network (FFN). The FFN can approximate general functions and mitigate the curse of dimensionality. Here we introduce FFNs which represent sections of holomorphic line bundles on complex manifolds, and ask some questions about their approximating power. We also explain formal similarities between the standard approach to supervised learning and the problem of finding numerical Ricci flat K\"ahler metrics, which...
June 8, 2018
The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...
August 4, 2020
We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...
November 15, 2018
We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...
October 7, 2010
This is a survey of our recent work on degenerations of Ricci-flat Kahler metrics on compact Calabi-Yau manifolds with Kahler classes approaching the boundary of the Kahler cone.