May 26, 2022
Similar papers 5
July 9, 2009
We introduce a simple and very fast algorithm that computes Weil-Petersson metrics on moduli spaces of polarized Calabi-Yau manifolds. Also, by using Donaldson's quantization link between the infinite and finite dimensional G.I.T quotients that describe moduli spaces of varieties, we define a natural sequence of Kaehler metrics. We prove that the sequence converges to the Weil-Petersson metric. We also develop an algorithm that numerically approximates such metrics, and hence...
July 28, 2015
This is a survey article of the recent progresses on the metric behaviour of Ricci-flat K\"{a}hler-Einstein metrics along degenerations of Calabi-Yau manifolds.
May 8, 2014
We investigate the mathematical properties of the class of Calabi-Yau four-folds recently found in [arXiv:1303.1832]. This class consists of 921,497 configuration matrices which correspond to manifolds that are described as complete intersections in products of projective spaces. For each manifold in the list, we compute the full Hodge diamond as well as additional topological invariants such as Chern classes and intersection numbers. Using this data, we conclude that there a...
December 28, 2005
The first part of this paper discusses general procedures for finding numerical approximations to distinguished Kahler metrics, such as Calabi-Yau metrics, on complex projective manifolds. These procedures are closely related to ideas from Geometric Invariant Theory, and to the asymptotics of high powers of positive line bundles. In the core of the paper these ideas are illustrated by detailed numerical results for a particular K3 surface.
January 26, 2024
One of the challenges of heterotic compactification on a Calabi-Yau threefold is to determine the physical $(\mathbf{27})^3$ Yukawa couplings of the resulting four-dimensional $\mathcal{N}=1$ theory. In general, the calculation necessitates knowledge of the Ricci-flat metric. However, in the standard embedding, which references the tangent bundle, we can compute normalized Yukawa couplings from the Weil-Petersson metric on the moduli space of complex structure deformations of...
June 11, 2017
We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...
November 5, 2014
Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, i...
November 30, 2022
Neural networks with PDEs embedded in their loss functions (physics-informed neural networks) are employed as a function approximators to find solutions to the Ricci flow (a curvature based evolution) of Riemannian metrics. A general method is developed and applied to the real torus. The validity of the solution is verified by comparing the time evolution of scalar curvature with that found using a standard PDE solver, which decreases to a constant value of 0 on the whole man...
October 11, 2014
In this paper, we construct a completion of the moduli space for polarized Calabi-Yau manifolds by using Ricci-flat K\"ahler-Einstein metrics and the Gromov-Hausdorff topology, which parameterizes certain Calabi-Yau varieties. We then study the algebro-geometric perperties and the Weil-Petersson geometry of such completion. We show that the completion can be exhausted by sequences of quasi-projective varieties, and new points added have finite Weil-Petersson distance to the i...
June 20, 2019
We investigate different approaches to machine learning of line bundle cohomology on complex surfaces as well as on Calabi-Yau three-folds. Standard function learning based on simple fully connected networks with logistic sigmoids is reviewed and its main features and shortcomings are discussed. It has been observed recently that line bundle cohomology can be described by dividing the Picard lattice into certain regions in each of which the cohomology dimension is described b...