July 6, 2022
Similar papers 2
March 9, 2024
This paper presents a generative artificial intelligence approach to probabilistic forecasting of electricity market signals, such as real-time locational marginal prices and area control error signals. Inspired by the Wiener-Kallianpur innovation representation of nonparametric time series, we propose a weak innovation autoencoder architecture and a novel deep learning algorithm that extracts the canonical independent and identically distributed innovation sequence of the ti...
June 5, 2020
Middle-term horizon (months to a year) power consumption prediction is a main challenge in the energy sector, in particular when probabilistic forecasting is considered. We propose a new modelling approach that incorporates trend, seasonality and weather conditions, as explicative variables in a shallow Neural Network with an autoregressive feature. We obtain excellent results for density forecast on the one-year test set applying it to the daily power consumption in New Engl...
March 14, 2019
Due to their flexibility and predictive performance, machine-learning based regression methods have become an important tool for predictive modeling and forecasting. However, most methods focus on estimating the conditional mean or specific quantiles of the target quantity and do not provide the full conditional distribution, which contains uncertainty information that might be crucial for decision making. In this article, we provide a general solution by transforming a condi...
October 1, 2021
Using hourly energy consumption data recorded by smart meters, retailers can estimate the day-ahead energy consumption of their customer portfolio. Deep neural networks are especially suited for this task as a huge amount of historical consumption data is available from smart meter recordings to be used for model training. Probabilistic layers further enable the estimation of the uncertainty of the consumption forecasts. Here, we propose a method to calculate hourly day-ahead...
May 23, 2022
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation. To address this challenge, the energy exchanges have been developing further trading possibilities, especially the intraday and balancing markets. For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest. Therefore, in this manuscript we conduct a very short-term probabilistic forecasting...
October 13, 2020
We examine the problem of modeling and forecasting European Day-Ahead and Month-Ahead natural gas prices. For this, we propose two distinct probabilistic models that can be utilized in risk- and portfolio management. We use daily pricing data ranging from 2011 to 2020. Extensive descriptive data analysis shows that both time series feature heavy tails, conditional heteroscedasticity, and show asymmetric behavior in their differences. We propose state-space time series models ...
May 27, 2020
The reliable estimation of forecast uncertainties is crucial for risk-sensitive optimal decision making. In this paper, we propose implicit generative ensemble post-processing, a novel framework for multivariate probabilistic electricity price forecasting. We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios with a coherent dependency structure as a representation of the joint ...
November 21, 2024
Forecasters using flexible neural networks (NN) in multi-horizon distributional regression setups often struggle to gain detailed insights into the underlying mechanisms that lead to the predicted feature-conditioned distribution parameters. In this work, we deploy a Neural Basis Model for Location, Scale and Shape, that blends the principled interpretability of GAMLSS with a computationally scalable shared basis decomposition, combined by linear projections supporting dedica...
July 27, 2020
Electricity prices strongly depend on seasonality of different time scales, therefore any forecasting of electricity prices has to account for it. Neural networks have proven successful in short-term price-forecasting, but complicated architectures like LSTM are used to integrate the seasonal behaviour. This paper shows that simple neural network architectures like DNNs with an embedding layer for seasonality information can generate a competitive forecast. The embedding-base...
June 5, 2023
Probabilistic time series forecasting predicts the conditional probability distributions of the time series at a future time given past realizations. Such techniques are critical in risk-based decision-making and planning under uncertainties. Existing approaches are primarily based on parametric or semi-parametric time-series models that are restrictive, difficult to validate, and challenging to adapt to varying conditions. This paper proposes a nonparametric method based on ...