July 6, 2022
Similar papers 3
November 30, 2017
The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity price and temperature) are investigated. Then, to quantify the tail-dependence of powe...
February 12, 2024
In this paper we propose a new method for probabilistic forecasting of electricity prices. It is based on averaging point forecasts from different models combined with expectile regression. We show that deriving the predicted distribution in terms of expectiles, might be in some cases advantageous to the commonly used quantiles. We apply the proposed method to the day-ahead electricity prices from the German market and compare its accuracy with the Quantile Regression Averagi...
December 6, 2018
Accurate forecasts of electricity spot prices are essential to the daily operational and planning decisions made by power producers and distributors. Typically, point forecasts of these quantities suffice, particularly in the Nord Pool market where the large quantity of hydro power leads to price stability. However, when situations become irregular, deviations on the price scale can often be extreme and difficult to pinpoint precisely, which is a result of the highly varying ...
June 17, 2021
Greater direct electrification of end-use sectors with a higher share of renewables is one of the pillars to power a carbon-neutral society by 2050. However, in contrast to conventional power plants, renewable energy is subject to uncertainty raising challenges for their interaction with power systems. Scenario-based probabilistic forecasting models have become a vital tool to equip decision-makers. This paper presents to the power systems forecasting practitioners a recent d...
September 22, 2022
The field of electricity price forecasting has seen significant advances in the last years, including the development of new, more accurate forecast models. These models leverage statistical relationships in previously observed data to predict the future; however, there is a lack of analysis explaining these models, which limits their real world applicability in critical infrastructure. In this paper, using data from the Belgian electricity markets, we explore a state-of-the-...
June 10, 2020
Retailers and major consumers of electricity generally purchase an important percentage of their estimated electricity needs years ahead in the forward market. This long-term electricity procurement task consists of determining when to buy electricity so that the resulting energy cost is minimised, and the forecast consumption is covered. In this scientific article, the focus is set on a yearly base load product from the Belgian forward market, named calendar (CAL), which is ...
March 5, 2022
With the expected rise in behind-the-meter solar penetration within the distribution networks, there is a need to develop time-series forecasting methods that can reliably predict the net-load, accurately quantifying its uncertainty and variability. This paper presents a deep learning method to generate probabilistic forecasts of day-ahead net-load at 15-min resolution, at various solar penetration levels. Our proposed deep-learning based architecture utilizes the dimensional...
February 6, 2023
Probabilistic forecasts are essential for various downstream applications such as business development, traffic planning, and electrical grid balancing. Many of these probabilistic forecasts are performed on time series data that contain calendar-driven periodicities. However, existing probabilistic forecasting methods do not explicitly take these periodicities into account. Therefore, in the present paper, we introduce a deep learning-based method that considers these calend...
August 2, 2023
While deep learning gradually penetrates operational planning, its inherent prediction errors may significantly affect electricity prices. This letter examines how prediction errors propagate into electricity prices, revealing notable pricing errors and their spatial disparity in congested power systems. To improve fairness, we propose to embed electricity market-clearing optimization as a deep learning layer. Differentiating through this layer allows for balancing between pr...
June 16, 2016
Recently there has been significant research on power generation, distribution and transmission efficiency especially in the case of renewable resources. The main objective is reduction of energy losses and this requires improvements on data acquisition and analysis. In this paper we address these concerns by using consumers' electrical smart meter readings to estimate network loading and this information can then be used for better capacity planning. We compare Deep Neural N...