October 4, 2024
We present MELODI, a novel memory architecture designed to efficiently process long documents using short context windows. The key principle behind MELODI is to represent short-term and long-term memory as a hierarchical compression scheme across both network layers and context windows. Specifically, the short-term memory is achieved through recurrent compression of context windows across multiple layers, ensuring smooth transitions between windows. In contrast, the long-term...
December 27, 2019
The key to a Transformer model is the self-attention mechanism, which allows the model to analyze an entire sequence in a computationally efficient manner. Recent work has suggested the possibility that general attention mechanisms used by RNNs could be replaced by active-memory mechanisms. In this work, we evaluate whether various active-memory mechanisms could replace self-attention in a Transformer. Our experiments suggest that active-memory alone achieves comparable resul...
May 13, 2021
Attention mechanisms have shown promising results in sequence modeling tasks that require long-term memory. Recent work investigated mechanisms to reduce the computational cost of preserving and storing memories. However, not all content in the past is equally important to remember. We propose Expire-Span, a method that learns to retain the most important information and expire the irrelevant information. This forgetting of memories enables Transformers to scale to attend ove...
February 19, 2025
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term m...
April 14, 2024
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no ad...
February 4, 2025
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended seq...
November 12, 2024
In Partially Observable Markov Decision Processes, integrating an agent's history into memory poses a significant challenge for decision-making. Traditional imitation learning, relying on observation-action pairs for expert demonstrations, fails to capture the expert's memory mechanisms used in decision-making. To capture memory processes as demonstrations, we introduce the concept of memory dependency pairs $(p, q)$ indicating that events at time $p$ are recalled for decisio...
February 23, 2024
Transformer-based language models (LMs) track contextual information through large, hard-coded input windows. We introduce MemoryPrompt, a leaner approach in which the LM is complemented by a small auxiliary recurrent network that passes information to the LM by prefixing its regular input with a sequence of vectors, akin to soft prompts, without requiring LM finetuning. Tested on a task designed to probe a LM's ability to keep track of multiple fact updates, a MemoryPrompt-a...
January 23, 2025
Transformative innovations in model architectures have introduced hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures, offering enhanced adaptability to complex linguistic inputs. Autonomous structural memory manipulation further advances this paradigm through dynamic memory reallocation mechanisms that prioritize critical contextual features while suppressing less relevant information, enabling scala...
September 14, 2021
Transformers have recently been popular for learning and inference in the spatial-temporal domain. However, their performance relies on storing and applying attention to the feature tensor of each frame in video. Hence, their space and time complexity increase linearly as the length of video grows, which could be very costly for long videos. We propose a novel visual memory network architecture for the learning and inference problem in the spatial-temporal domain. We maintain...