August 29, 2022
We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay-Nakajima-Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to $\mathcal{W}$-algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the $\mathcal{W}$-algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.
Similar papers 1
June 13, 2022
In this note, we study possible $\mathcal{R}$-matrix constructions in the context of quiver Yangians and Yang-Baxter algebras. For generalized conifolds, we also discuss the relations between the quiver Yangians and some other Yangian algebras (and $\mathcal{W}$-algebras) in literature.
April 3, 2023
We consider the quiver Yangians associated to general affine Dynkin diagrams. Although the quivers are generically not toric, the algebras have some similar structures. The odd reflections of the affine Dynkin diagrams should correspond to Seiberg duality of the quivers, and we investigate the relations of the dual quiver Yangians. We also mention the construction of the twisted quiver Yangians. It is conjectured that the truncations of the (twisted) quiver Yangians can give ...
March 27, 2022
The goal of this short article is to summarize some of the recent developments in the quiver Yangians and crystal meltings. This article is based on a lecture delivered by the author at International Congress on Mathematical Physics (ICMP), Geneva, 2021.
September 18, 2003
We study Seiberg duality of quiver gauge theories associated to the complex cone over the second del Pezzo surface. Homomorphisms in the path algebra of the quivers in each of these cases satisfy relations which follow from a superpotential of the corresponding gauge theory as F-flatness conditions. We verify that Seiberg duality between each pair of these theories can be understood as a derived equivalence between the categories of modules of representation of the path algeb...
August 16, 2021
Recently, Li and Yamazaki proposed a new class of infinite-dimensional algebras, quiver Yangian, which generalizes the affine Yangian $\mathfrak{gl}_{1}$. The characteristic feature of the algebra is the action on BPS states for non-compact toric Calabi-Yau threefolds, which are in one-to-one correspondence with the crystal melting models. These algebras can be bootstrapped from the action on the crystals and have various truncations. In this paper, we propose a $q$-deforme...
November 6, 2012
In this paper, we study the classical and quantum equivariant cohomology of Nakajima quiver varieties for a general quiver Q. Using a geometric R-matrix formalism, we construct a Hopf algebra Y_Q, the Yangian of Q, acting on the cohomology of these varieties, and show several results about their basic structure theory. We prove a formula for quantum multiplication by divisors in terms of this Yangian action. The quantum connection can be identified with the trigonometric Casi...
August 19, 2012
We re-examine some topics in representation theory of Lie algebras and Springer theory in a more general context, viewing the universal enveloping algebra as an example of the section ring of a quantization of a conical symplectic resolution. While some modification from this classical context is necessary, many familiar features survive. These include a version of the Beilinson-Bernstein localization theorem, a theory of Harish-Chandra bimodules and their relationship to con...
September 5, 2021
Recently, new classes of infinite-dimensional algebras, quiver Yangian (QY) and shifted QY, were introduced, and they act on BPS states for non-compact toric Calabi-Yau threefolds. In particular, shifted QY acts on general subcrystals of the original BPS crystal. A trigonometric deformation called quiver quantum toroidal algebra (QQTA) was also proposed and shown to act on the same BPS crystal. Unlike QY, QQTA has a formal Hopf superalgebra structure which is useful in derivi...
June 28, 2024
In this note, we aim to review algorithms for constructing crystal representations of quiver Yangians in detail. Quiver Yangians are believed to describe an action of the BPS algebra on BPS states in systems of D-branes wrapping toric Calabi-Yau three-folds. Crystal modules of these algebras originate from molten crystal models for Donaldson-Thomas invariants of respective three-folds. Despite the fact that this subject was originally at the crossroads of algebraic geometry w...
May 9, 2023
Convolution in Borel-Moore homology plays an important role in Nakajima's construction of representations of the Heisenberg algebra and of modified enveloping algebras of Kac-Moody algebras. In its most basic form, convolution between two quiver varieties is given by pullback and then pushforward via the Hecke correspondence for quivers. In previous work we showed that the Hecke correspondence has a Morse-theoretic interpretation in terms of spaces of flow lines. The goal o...