September 15, 2022
Similar papers 5
May 5, 2018
We study an extremal question for the (reversible) $r-$bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the $r-$bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least $r$ active neighbors, and an active vertex stays active forever. In the reversible $r$-bootstrap percolation, each vertex gets active if it has at least $r$ active neigh...
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
June 22, 2017
In the polluted bootstrap percolation model, vertices of the cubic lattice $\mathbb{Z}^3$ are independently declared initially occupied with probability $p$ or closed with probability $q$. Under the standard (respectively, modified) bootstrap rule, a vertex becomes occupied at a subsequent step if it is not closed and it has at least $3$ occupied neighbors (respectively, an occupied neighbor in each coordinate). We study the final density of occupied vertices as $p,q\to 0$. W...
October 14, 2016
Bootstrap percolation is a deterministic cellular automaton in which vertices of a graph~$G$ begin in one of two states, "dormant" or "active". Given a fixed integer $r$, a dormant vertex becomes active if at any stage it has at least $r$ active neighbors, and it remains active for the duration of the process. Given an initial set of active vertices $A$, we say that $G$ $r$-percolates (from $A$) if every vertex in $G$ becomes active after some number of steps. Let $m(G,r)$ de...
August 11, 2015
Majority bootstrap percolation on a graph $G$ is an epidemic process defined in the following manner. Firstly, an initially infected set of vertices is selected. Then step by step the vertices that have more infected than non-infected neighbours are infected. We say that percolation occurs if eventually all vertices in $G$ become infected. In this paper we study majority bootstrap percolation on the Erd\H{o}s-R\'enyi random graph $G(n,p)$ above the connectivity threshold. P...
May 6, 2019
For any integer $r\geqslant0$, the $r$-neighbor bootstrap percolation on a graph is an activation process of the vertices. The process starts with some initially activated vertices and then, in each round, any inactive vertex with at least $r$ active neighbors becomes activated. A set of initially activated vertices leading to the activation of all vertices is said to be a percolating set. Denote the minimum size of a percolating set in the $r$-neighbor bootstrap percolation ...
March 24, 2018
In \emph{$k$-bootstrap percolation}, we fix $p\in (0,1)$, an integer $k$, and a plane graph $G$. Initially, we infect each face of $G$ independently with probability $p$. Infected faces remain infected forever, and if a healthy (uninfected) face has at least $k$ infected neighbors, then it becomes infected. For fixed $G$ and $p$, the \emph{percolation threshold} is the largest $k$ such that eventually all faces become infected, with probability at least $1/2$. For a large cla...
May 4, 2017
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Z^d of dimension d>=3 with threshold r=2, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result pa...
July 10, 2019
Graph-bootstrap percolation, also known as weak saturation, was introduced by Bollob\'as in 1968. In this process, we start with initial "infected" set of edges $E_0$, and we infect new edges according to a predetermined rule. Given a graph $H$ and a set of previously infected edges $E_t\subseteq E(K_n)$, we infect a non-infected edge $e$ if it completes a new copy of $H$ in $G=([n],E_t\cup e)$. A question raised by Bollob\'as asks for the maximum time the process can run bef...
November 5, 2019
This paper is dedicated to the study of the interaction between dynamical systems and percolation models, with views towards the study of viral infections whose virus mutate with time. Recall that r-bootstrap percolation describes a deterministic process where vertices of a graph are infected once r neighbors of it are infected. We generalize this by introducing F(t)-bootstrap percolation, a time-dependent process where the number of neighbouring vertices which need to be inf...