October 17, 2022
We prove an impossibility result, which in the context of function learning says the following: under certain conditions, it is impossible to simultaneously learn symmetries and functions equivariant under them using an ansatz consisting of equivariant functions. To formalize this statement, we carefully study notions of approximation for groups and semigroups. We analyze certain families of neural networks for whether they satisfy the conditions of the impossibility result: ...
October 24, 2022
Equivariant networks capture the inductive bias about the symmetry of the learning task by building those symmetries into the model. In this paper, we study how equivariance relates to generalization error utilizing PAC Bayesian analysis for equivariant networks, where the transformation laws of feature spaces are determined by group representations. By using perturbation analysis of equivariant networks in Fourier domain for each layer, we derive norm-based PAC-Bayesian gene...
May 15, 2022
We explain equivariant neural networks, a notion underlying breakthroughs in machine learning from deep convolutional neural networks for computer vision to AlphaFold 2 for protein structure prediction, without assuming knowledge of equivariance or neural networks. The basic mathematical ideas are simple but are often obscured by engineering complications that come with practical realizations. We extract and focus on the mathematical aspects, and limit ourselves to a cursory ...
December 16, 2024
Geometric quantum machine learning uses the symmetries inherent in data to design tailored machine learning tasks with reduced search space dimension. The field has been well-studied recently in an effort to avoid barren plateau issues while improving the accuracy of quantum machine learning models. This work explores the related problem of learning an equivariant map given two unitary representations of a finite group, which in turn allows the symmetric embedding of the data...
December 13, 2023
In this work, we formally prove that, under certain conditions, if a neural network is invariant to a finite group then its weights recover the Fourier transform on that group. This provides a mathematical explanation for the emergence of Fourier features -- a ubiquitous phenomenon in both biological and artificial learning systems. The results hold even for non-commutative groups, in which case the Fourier transform encodes all the irreducible unitary group representations. ...
April 10, 2020
Group equivariant neural networks have been explored in the past few years and are interesting from theoretical and practical standpoints. They leverage concepts from group representation theory, non-commutative harmonic analysis and differential geometry that do not often appear in machine learning. In practice, they have been shown to reduce sample and model complexity, notably in challenging tasks where input transformations such as arbitrary rotations are present. We begi...
December 27, 2020
Group symmetry is inherent in a wide variety of data distributions. Data processing that preserves symmetry is described as an equivariant map and often effective in achieving high performance. Convolutional neural networks (CNNs) have been known as models with equivariance and shown to approximate equivariant maps for some specific groups. However, universal approximation theorems for CNNs have been separately derived with individual techniques according to each group and se...
February 27, 2017
We propose to study equivariance in deep neural networks through parameter symmetries. In particular, given a group $\mathcal{G}$ that acts discretely on the input and output of a standard neural network layer $\phi_{W}: \Re^{M} \to \Re^{N}$, we show that $\phi_{W}$ is equivariant with respect to $\mathcal{G}$-action iff $\mathcal{G}$ explains the symmetries of the network parameters $W$. Inspired by this observation, we then propose two parameter-sharing schemes to induce th...
November 5, 2018
We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also consider a fundamental question: what is the most gener...
December 4, 2023
Optimizing and certifying the positivity of polynomials are fundamental primitives across mathematics and engineering applications, from dynamical systems to operations research. However, solving these problems in practice requires large semidefinite programs, with poor scaling in dimension and degree. In this work, we demonstrate for the first time that neural networks can effectively solve such problems in a data-driven fashion, achieving tenfold speedups while retaining hi...