November 20, 2023
We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...
June 11, 2017
We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...
September 5, 2020
Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...
While the earliest applications of AI methodologies to pure mathematics and theoretical physics began with the study of Hodge numbers of Calabi-Yau manifolds, the topology type of such manifold also crucially depend on their intersection theory. Continuing the paradigm of machine learning algebraic geometry, we here investigate the triple intersection numbers, focusing on certain divisibility invariants constructed therefrom, using the Inception convolutional neural network. ...
December 7, 2018
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...
October 30, 2023
We develop a theory of flows in the space of Riemannian metrics induced by neural network gradient descent. This is motivated in part by recent advances in approximating Calabi-Yau metrics with neural networks and is enabled by recent advances in understanding flows in the space of neural networks. We derive the corresponding metric flow equations, which are governed by a metric neural tangent kernel, a complicated, non-local object that evolves in time. However, many archite...
May 29, 2024
We numerically study whether there exist nowhere vanishing harmonic $1$-forms on the real locus of some carefully constructed examples of Calabi-Yau manifolds, which would then give rise to potentially new examples of $G_2$-manifolds and an explicit description of their metrics. We do this in two steps: first, we use a neural network to compute an approximate Calabi-Yau metric on each manifold. Second, we use another neural network to compute an approximately harmonic $1$-for...
December 23, 2019
We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau...
November 1, 2024
In order to be in control of the $\alpha'$ derivative expansion, geometric string compactifications are understood in the context of a large volume approximation. In this letter, we consider the reduction of these higher derivative terms, and propose an improved estimate on the large volume approximation using numerical Calabi-Yau metrics obtained via machine learning methods. Further to this, we consider the $\alpha'^3$ corrections to numerical Calabi-Yau metrics in the cont...
August 4, 2021
We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...