December 15, 2022
Similar papers 3
August 5, 2022
We study the process, within classical general relativity, in which an incident gravitational plane wave, of weak amplitude and long wavelength, scatters off a massive spinning compact object, such as a black hole or neutron star. The amplitude of the asymptotic scattered wave, considered here at linear order in Newton's constant $G$ while at higher orders in the object's multipole expansion, is a valuable characterization of the response of the object to external gravitation...
September 23, 2016
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-1/2, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude t...
October 24, 2021
We derive the classical gravitational radiation from an aligned spin binary black hole on \textit{closed} orbits, using a dictionary built from the 5-point QFT scattering amplitude of two massive particles exchanging and emitting a graviton. We show explicitly the agreement of the transverse-traceless components of the radiative linear metric perturbations -- and the corresponding gravitational wave energy flux -- at future null infinity, derived from the scattering amplitude...
November 30, 2007
Aspects of super-planckian gravitational scattering and black hole formation are investigated, largely via a partial-wave representation. At large and decreasing impact parameters, amplitudes are expected to be governed by single graviton exchange, and then by eikonalized graviton exchange, for which partial-wave amplitudes are derived. In the near-Schwarzschild regime, perturbation theory fails. However, general features of gravitational scattering associated with black hole...
December 10, 2023
We present a novel study of Kerr Compton amplitudes in a partial wave basis in terms of the Nekrasov-Shatashvili (NS) function of the \textit{confluent Heun equation} (CHE). Remarkably, NS-functions enjoy analytic properties and symmetries that are naturally inherited by the Compton amplitudes. Based on this, we characterize the analytic dependence of the Compton phase-shift in the Kerr spin parameter and provide a direct comparison to the standard post-Minkowskian (PM) pertu...
We develop massive higher-spin theory as a framework for describing dynamics of rotating compact objects, such as Kerr black holes. In this paper, we explore gauge interactions up to quartic order and corresponding Compton amplitudes of higher-spin massive objects coupled to electromagnetism and Yang-Mills theory. Their classical counterparts are known as root-Kerr gauge-theory solutions, whose amplitudes are closely related to those of Kerr black holes. We use three distinct...
September 13, 2022
The massless (or ultrarelativistic) limit of a Schwarzschild black hole with fixed energy was determined long ago in the form of the Aichelburg-Sexl shockwave, but the status of the same limit for a Kerr black hole is less clear. In this paper, we explore the ultrarelativistic limit of Kerr in the class of Kerr-Schild impulsive pp-waves by exploiting a relation between the metric profile and the eikonal phase associated with scattering between a scalar and the source of the m...
February 5, 2008
We study the gravitational scattering of massive particles with and without spin in the effective theory of gravity at one loop level. Our focus is on long distance effects arising from nonanalytic components of the scattering amplitude and we show that the spin-independent and the spin-dependent long range components exhibit a universal form. Both classical and quantum corrections are obtained, and the definition of a proper second order potential is discussed.
December 12, 2022
We propose that the dynamics of Kerr black holes is strongly constrained by the principle of gauge symmetry. We initiate the construction of EFTs for Kerr black holes of any integer quantum spin s using Stueckelberg fields, and show that the known three-point Kerr amplitudes are uniquely predicted using massive higher-spin gauge symmetry. This symmetry is argued to be connected to an enhanced range of validity for the Kerr EFTs. We consider the closely related root-Kerr elect...
December 4, 2020
We study scattering on the black hole horizon in a partial wave basis, with an impact parameter of the order of the Schwarzschild radius or less. This resembles the strong gravity regime where quantum gravitational effects appear. The scattering is governed by an infinite number of virtual gravitons exchanged on the horizon. Remarkably, they can all be summed non-perturbatively in $\hbar$ and $\gamma \sim M_{Pl}/M_{BH}$. These results generalise those obtained from studying g...