January 22, 2023
In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq \mathbb{Z}/q\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.
Similar papers 1
There exists an absolute constant $\delta > 0$ such that for all $q$ and all subsets $A \subseteq \mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \delta}$, then \[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $\delta < 1/13,542$ suffices for sufficiently large $q$. This improves the condition $|A| > q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. Our proof is based on ...
February 7, 2016
We prove that for any finite set A of real numbers its difference set D:=A-A has large product set and quotient set, namely, |DD|, |D/D| \gg |D|^{1+c}, where c>0 is an absolute constant. A similar result takes place in the prime field F_p for sufficiently small D. It gives, in particular, that multiplicative subgroups of size less than p^{4/5-\eps} cannot be represented in the form A-A for any A from F_p.
February 8, 2017
In this paper we prove that given two sets $E_1,E_2 \subset \mathbb{Z}$ of positive density, there exists $k \geq 1$ which is bounded by a number depending only on the densities of $E_1$ and $E_2$ such that $k\mathbb{Z} \subset (E_1-E_1)\cdot(E_2-E_2)$. As a corollary of the main theorem we deduce that if $\alpha,\beta > 0$ then there exist $N_0$ and $d_0$ which depend only on $\alpha$ and $\beta$ such that for every $N \geq N_0$ and $E_1,E_2 \subset \mathbb{Z}_N$ with $|E_1|...
July 11, 2020
We prove that if $\varepsilon(m)\to 0$ arbitrarily slowly, then for almost all $m$ and any $A\subset\mathbb{Z}_m$ such that $A-A$ does not contain non-zero quadratic residues we have $|A|\leq m^{1/2-\varepsilon(m)}.$
October 18, 2022
Suppose that $A$ is a finite, nonempty subset of a cyclic group of either infinite or prime order. We show that if the difference set $A-A$ is ``not too large'', then there is a nonzero group element with at least as many as $(2+o(1))|A|^2/|A-A|$ representations as a difference of two elements of $A$; that is, the second largest number of representations is, essentially, twice the average. Here the coefficient $2$ is the best possible. We also prove continuous and multidime...
Let $h$ be a positive integer and let $\varepsilon > 0$. The Haight-Ruzsa method produces a positive integer $m^*$ and a subset $A$ of the additive abelian group $\mathbf{Z}/m^*\mathbf{Z}$ such that the difference set is large in the sense that $A-A = \mathbf{Z}/m^*\mathbf{Z}$ and $h$-fold sumset is small in the sense that $|hA| < \varepsilon m^*$. This note describes, and in a modest way extends, the Haight-Ruzsa argument, and constructs sets with more differences than multi...
May 24, 2017
For every $\epsilon > 0$ and $k \in \mathbb{N}$, Haight constructed a set $A \subset \mathbb{Z}_N$ ($\mathbb{Z}_N$ stands for the integers modulo $N$) for a suitable $N$, such that $A-A = \mathbb{Z}_N$ and $|kA| < \epsilon N$. Recently, Nathanson posed the problem of constructing sets $A \subset \mathbb{Z}_N$ for given polynomials $p$ and $q$, such that $p(A) = \mathbb{Z}_N$ and $|q(A)| < \epsilon N$, where $p(A)$ is the set $\{p(a_1, a_2, \dots, a_n)\phantom{.}\colon\phantom...
We consider the multiplicative structure of sets of the form AA+1, where where A is a large, finite set of real numbers. In particular, we show that the additively shifted product set, AA+1 must have a large part outside of any generalized geometric progression of comparable length. We prove an analogous result in finite fields as well.
October 28, 2022
In a recent work \cite{key-11}, A. Fish proved that if $E_{1}$ and $E_{2}$ are two subsets of $\mathbb{Z}$ of positive upper Banach density, then there exists $k\in\mathbb{Z}$ such that $k\cdot\mathbb{Z}\subset\left(E_{1}-E_{1}\right)\cdot\left(E_{2}-E_{2}\right).$ In this article we will show that a similar result is true for the set of primes $\mathbb{P}$ (which has density $0$). We will prove that there exists $k\in\mathbb{N}$ such that $k\cdot\mathbb{N}\subset\left(\mathb...
June 27, 2020
For $\ell\geq 2$ and $h\in \mathbb{Z}[x_1,\dots,x_{\ell}]$ of degree $k\geq 2$, we show that every set $A\subseteq \{1,2,\dots,N\}$ lacking nonzero differences in $h(\mathbb{Z}^{\ell})$ satisfies $|A|\ll_h Ne^{-c(\log N)^{\mu}}$, where $c=c(h)>0$, $\mu=[(k-1)^2+1]^{-1}$ if $\ell=2$, and $\mu=1/2$ if $\ell\geq 3$, provided $h(\mathbb{Z}^{\ell})$ contains a multiple of every natural number and $h$ satisfies certain nonsingularity conditions. We also explore these conditions in ...