February 10, 2023
Similar papers 3
April 11, 2023
The telegraph model is the standard model of stochastic gene expression, which can be solved exactly to obtain the distribution of mature RNA numbers per cell. A modification of this model also leads to an analytical distribution of the nascent RNA numbers. These solutions are routinely used for the analysis of single-cell data, including the inference of transcriptional parameters. However, these models neglect important mechanistic features of transcription elongation, such...
November 1, 2019
Single-cell RNA sequencing data have complex features such as dropout events, over-dispersion, and high-magnitude outliers, resulting in complicated probability distributions of mRNA abundances that are statistically characterized in terms of a zero-inflated negative binomial (ZINB) model. Here we provide a mesoscopic kinetic foundation of the widely used ZINB model based on the biochemical reaction kinetics underlying transcription. Using multiscale modeling and simplificati...
June 18, 2015
RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene...
May 11, 2014
Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF level...
June 27, 2024
Mathematical models of gene regulatory networks are widely used to study cell fate changes and transcriptional regulation. When designing such models, it is important to accurately account for sources of stochasticity. However, doing so can be computationally expensive and analytically untractable, posing limits on the extent of our explorations and on parameter inference. Here, we explore this challenge using the example of a simple auto-negative feedback motif, in which we ...
September 4, 2016
RNA-Seq is a widely-used method for studying the behavior of genes under different biological conditions. An essential step in an RNA-Seq study is normalization, in which raw data are adjusted to account for factors that prevent direct comparison of expression measures. Errors in normalization can have a significant impact on downstream analysis, such as inflated false positives in differential expression analysis. An under-emphasized feature of normalization is the assumptio...
September 10, 2023
Gene regulatory networks, as a powerful abstraction for describing complex biological interactions between genes through their expression products within a cell, are often regarded as virtually deterministic dynamical systems. However, this view is now being challenged by the fundamentally stochastic, 'bursty' nature of gene expression revealed at the single cell level. We present a Python package called Harissa which is dedicated to simulation and inference of such networks,...
September 11, 2014
Stochasticity in gene expression can give rise to fluctuations in protein levels and lead to phenotypic variation across a population of genetically identical cells. Recent experiments indicate that bursting and feedback mechanisms play important roles in controlling noise in gene expression and phenotypic variation. A quantitative understanding of the impact of these factors requires analysis of the corresponding stochastic models. However, for stochastic models of gene expr...
April 17, 2018
Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis...
April 8, 2008
{\it Transcription} is the process whereby RNA molecules are polymerized by molecular machines, called RNA polymerase (RNAP), using the corresponding DNA as the template. Recent {\it in-vivo} experiments with single cells have established that transcription takes place in "bursts" or "pulses". In this letter we present a model that captures not only the mechano-chemistry of individual RNAPs and their steric interactions but also the switching of the gene between the ON and OF...