ID: 2302.05316

Characterizing contaminant noise in barcoded perturbation experiments

February 10, 2023

View on ArXiv
Forrest Sheldon
Quantitative Biology
Statistics
Quantitative Methods
Applications

Bursting cells lead to ambient RNA that contaminates sequencing data. This process is especially problematic in perturbation experiments where transcription factors are implanted into cells to determine their effects. The presence of contaminants makes it difficult to determine whether a factor is truly expressed in the cell. This paper studies the properties of contaminant noise from an analytical perspective, showing that the cell bursting process constrains the form of the noise distribution across factors. These constraints can be leveraged to improve decontamination by removing counts that are more likely the result of noise than expression. In two biological replicates of a perturbation experiment, run across two sequencing protocols, decontaminated counts agree with bulk genomic measurements of the transduction rate and are automatically corrected for differences in sequencing.

Similar papers 1

Shigang Qiu, Tao Jia
Molecular Networks

Gene expression is a fundamental process in a living system. The small RNAs (sRNAs) is widely observed as a global regulator in gene expression. The inherent nonlinearity in this regulatory process together with the bursty production of messenger RNA (mRNA), sRNA and protein make the exact solution for this stochastic process intractable. This is particularly the case when quantifying the protein noise level, which has great impact on multiple cellular processes. Here we prop...

Niraj Kumar, Abhyudai Singh, Rahul V. Kulkarni
Molecular Networks
Statistical Mechanics
Biological Physics

Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Bursting in gene expression is known to impact cell-fate in diverse systems ranging from latency in HIV-1 viral infections to cellular differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for com...

Stuart A. Sevier, David A. Kessler, Herbert Levine
Subcellular Processes

Over the last several decades it has been increasingly recognized that stochastic processes play a central role in transcription. Though many stochastic effects have been explained, the source of transcriptional bursting (one of the most well-known sources of stochasticity) has continued to evade understanding. Recent results have pointed to mechanical feedback as the source of transcriptional bursting but a reconciliation of this perspective with preexisting views of transcr...

Vlad Elgart, Tao Jia, ... , Kulkarni Rahul V.
Biological Physics

The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are disti...

Li-ping Xiong, Yu-qiang Ma, Lei-Han Tang
Subcellular Processes
Statistical Mechanics
Quantitative Methods

Due to the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A slow transport rate smoothes out fluctuations at the output end and minimizes the impact of bursting on the downstream cellular...

Pavol Bokes, Abhyudai Singh
Molecular Networks

Inside individual cells, expression of genes is stochastic across organisms ranging from bacterial to human cells. A ubiquitous feature of stochastic expression is burst-like synthesis of gene products, which drives considerable intercellular variability in protein levels across an isogenic cell population. One common mechanism by which cells control such stochasticity is negative feedback regulation, where a protein inhibits its own synthesis. For a single gene that is expre...

Tao Jia, Rahul V. Kulkarni
Molecular Networks
Biological Physics

The intrinsic stochasticity of gene expression can lead to large variability of protein levels across a population of cells. Variability (or noise) in protein distributions can be modulated by cellular mechanisms of gene regulation; in particular, there is considerable interest in understanding the role of post-transcriptional regulation. To address this issue, we propose and analyze a stochastic model for post-transcriptional regulation of gene expression. The analytical sol...

Tao Jia, Rahul V. Kulkarni
Molecular Networks
Soft Condensed Matter
Statistical Mechanics

Regulation of intrinsic noise in gene expression is essential for many cellular functions. Correspondingly, there is considerable interest in understanding how different molecular mechanisms of gene expression impact variations in protein levels across a population of cells. In this work, we analyze a stochastic model of bursty gene expression which considers general waiting-time distributions governing arrival and decay of proteins. By mapping the system to models analyzed i...

Pankaj Mehta, Sidhartha Goyal, Ned S. Wingreen
Molecular Networks
Subcellular Processes

Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in prokaryotes. sRNAs act post-transcriptionally via complementary pairing with target mRNAs to regulate protein expression. We use a quantitative approach to compare and contrast sRNAs with conventional transcription factors (TFs) to better understand the advantages of each form of regulation. In particular, we calculate the steady-state behavior, noise properties, frequency-dependent gain (amplificati...

Gasper Tkacik, Thomas Gregor, William Bialek
Molecular Networks
Cell Behavior

Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, an...