February 10, 2023
Similar papers 5
October 23, 2023
Although bulk transcriptomic analyses have significantly contributed to an enhanced comprehension of multifaceted diseases, their exploration capacity is impeded by the heterogeneous compositions of biological samples. Indeed, by averaging expression of multiple cell types, RNA-Seq analysis is oblivious to variations in cellular changes, hindering the identification of the internal constituents of tissues, involved in disease progression. On the other hand, single-cell techni...
August 12, 2015
We present a theoretical framework to analyze the dynamics of gene expression with stochastic bursts. Beginning with an individual-based model which fully accounts for the messenger RNA (mRNA) and protein populations, we propose a novel expansion of the master equation for the joint process. The resulting coarse-grained model reduces the dimensionality of the system, describing only the protein population while fully accounting for the effects of discrete and fluctuating mRNA...
October 31, 2013
Transcription of genes is the focus of most forms of regulation of gene expression. Even though careful biochemical experimentation has revealed the molecular mechanisms of transcription initiation for a number of different promoters in vitro, the dynamics of this process in cells is still poorly understood. One approach has been to measure the transcriptional output (fluorescently labeled messenger RNAs or proteins) from single cells in a genetically identical population, wh...
October 13, 2009
The processes, resulting in the transcription of RNA, are intrinsically noisy. It was observed experimentally that the synthesis of mRNA molecules is driven by short, burst-like, events. An accurate prediction of the protein level often requires one to take these fluctuations into account. Here, we consider the stochastic model of gene expression regulated by small RNAs. Small RNA post-transcriptional regulation is achieved by base-pairing with mRNA. We show that in a strong ...
January 22, 2013
High-throughput sequencing of RNA transcripts (RNA-seq) has become the method of choice for detection of differential expression (DE). Concurrent with the growing popularity of this technology there has been a significant research effort devoted towards understanding the statistical properties of this data and the development of analysis methods. We report on a comprehensive evaluation of the commonly used DE methods using the SEQC benchmark data set. We evaluate a number of ...
November 15, 2007
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponent...
July 24, 2017
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply...
March 29, 2020
We explore a Markov model used in the analysis of gene expression, involving the bursty production of pre-mRNA, its conversion to mature mRNA, and its consequent degradation. We demonstrate that the integration used to compute the solution of the stochastic system can be approximated by the evaluation of special functions. Furthermore, the form of the special function solution generalizes to a broader class of burst distributions. In light of the broader goal of biophysical p...
February 5, 2009
We derive exact solutions of simplified models for the temporal evolution of the protein concentration within a cell population arbitrarily far from the stationary state. We show that monitoring the dynamics can assist in modeling and understanding the nature of the noise and its role in gene expression and protein production. We introduce a new measure, the cell turnover distribution, which can be used to probe the phase of transcription of DNA into messenger RNA.
January 13, 2016
Gene expression is stochastic and displays variation ("noise") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identical gene pairs in single-cells. We examine established formulas for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. Th...