March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to help one do mathematics. This is an invited chapter contribution to Elsevier's Handbook of Statistics, Volume 49: Artificial Intelligence edited by S.~G.~Krantz, A.~S.~R.~Srinivasa Rao, and C.~R.~Rao.
Similar papers 1
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
January 15, 2021
We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...
February 12, 2022
We review the recent programme of using machine-learning to explore the landscape of mathematical problems. With this paradigm as a model for human intuition - complementary to and in contrast with the more formalistic approach of automated theorem proving - we highlight some experiments on how AI helps with conjecture formulation, pattern recognition and computation.
March 25, 2019
Machine learning encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. We review in a selective way the recent research on the interface between machine learning and physical sciences. This includes conceptual developments in machine learning (ML) motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross...
November 29, 2020
We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress i...
October 16, 2023
Machine learning is a rapidly growing field with the potential to revolutionize many areas of science, including physics. This review provides a brief overview of machine learning in physics, covering the main concepts of supervised, unsupervised, and reinforcement learning, as well as more specialized topics such as causal inference, symbolic regression, and deep learning. We present some of the principal applications of machine learning in physics and discuss the associated...
September 24, 2020
Neural network-based machine learning is capable of approximating functions in very high dimension with unprecedented efficiency and accuracy. This has opened up many exciting new possibilities, not just in traditional areas of artificial intelligence, but also in scientific computing and computational science. At the same time, machine learning has also acquired the reputation of being a set of "black box" type of tricks, without fundamental principles. This has been a real ...
December 7, 2018
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...
June 8, 2017
We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...
May 7, 2024
Technological advancements have substantially increased computational power and data availability, enabling the application of powerful machine-learning (ML) techniques across various fields. However, our ability to leverage ML methods for scientific discovery, {\it i.e.} to obtain fundamental and formalized knowledge about natural processes, is still in its infancy. In this review, we explore how the scientific community can increasingly leverage ML techniques to achieve sci...