March 24, 2023
We study two-dimensional critical bootstrap percolation models. We establish that a class of these models including all isotropic threshold rules with a convex symmetric neighbourhood, undergoes a sharp metastability transition. This extends previous instances proved for several specific rules. The paper supersedes a draft by Alexander Holroyd and the first author from 2012. While it served a role in the subsequent development of bootstrap percolation universality, we have chosen to adopt a more contemporary viewpoint in its present form.
Similar papers 1
October 22, 2010
Bootstrap percolation models have been extensively studied during the two past decades. In this article, we study the following "anisotropic" bootstrap percolation model: the neighborhood of a point (m,n) is the set \[\{(m+2,n),(m+1,n),(m,n+1),(m-1,n),(m-2,n),(m,n-1)\}.\] At time 0, sites are occupied with probability p. At each time step, sites that are occupied remain occupied, while sites that are not occupied become occupied if and only if three of more sites in their nei...
October 4, 2011
In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability threshold for a fairly general class of models. In our proofs we use an adaptation of the technique of dimensional reduction. We find that the order of the metastability threshold is generally determined by the "easiest growth direction" in the model. In contrast to the anisotropic bootstrap percolation in two dimensions, in th...
June 12, 2002
In the bootstrap percolation model, sites in an $L$ by $L$ square are initially independently declared active with probability $p$. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as $p \to 0$ and $L \to \infty$ simultaneously of the probability $I(L,p)$ that the entire square is eventually active. We prove that $I(L,p) \to 1$ if $\liminf p \log L > \lambda$, and $I(L,p) \to 0$ if $\limsup p \log L <...
November 10, 2016
We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with $(1,2)$-neighbourhood and threshold $r = 3$. The first order asymptotics for the critical probability were recently determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: \[ p_c\big( [L]^2,\mathcal{N}_{(1,2)},3 \big) \; = \; \frac{(\log \log L)^2}{12\log L} \, - \, \frac{\log ...
January 12, 2010
We generalize and improve results of Andrews, Gravner, Holroyd, Liggett, and Romik on metastability thresholds for generalized two-dimensional bootstrap percolation models, and answer several of their open problems and conjectures. Specifically, we prove slow convergence and localization bounds for Holroyd, Liggett, and Romik's k-percolation models, and in the process provide a unified and improved treatment of existing results for bootstrap, modified bootstrap, and Frobose p...
November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \g...
April 11, 2024
Metastability thresholds lie at the heart of bootstrap percolation theory. Yet proving precise lower bounds is notoriously hard. We show that for two of the most classical models, two-neighbour and Frob\"ose, upper bounds are sharp to essentially arbitrary precision, by linking them to their local counterparts. In Frob\"ose bootstrap percolation, iteratively, any vertex of the square lattice that is the only healthy vertex of a $1\times1$ square becomes infected and infecti...
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
May 27, 2021
In this article we study the sharpness of the phase transition for percolation models defined on top of planar spin systems. The two examples that we treat in detail concern the Glauber dynamics for the Ising model and a Dynamic Bootstrap process. For both of these models we prove that their phase transition is continuous and sharp, providing also quantitative estimates on the two point connectivity. The techniques that we develop in this work can be applied to a variety of d...
November 6, 2014
Bootstrap percolation provides an emblematic instance of phase behavior characterised by an abrupt transition with diverging critical fluctuations. This unusual hybrid situation generally occurs in particle systems in which the occupation probability of a site depends on the state of its neighbours through a certain threshold parameter. In this paper we investigate the phase behavior of the bootstrap percolation on the regular random graph in the limit in which the threshold ...