January 27, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^3$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,3\}$, where $a_1\le a_2\le a_3$. Suppose we infect any healthy vertex $v\in [L]^3$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine $\log$ of the critical length for percolation u...
October 22, 2010
Bootstrap percolation models have been extensively studied during the two past decades. In this article, we study the following "anisotropic" bootstrap percolation model: the neighborhood of a point (m,n) is the set \[\{(m+2,n),(m+1,n),(m,n+1),(m-1,n),(m-2,n),(m,n-1)\}.\] At time 0, sites are occupied with probability p. At each time step, sites that are occupied remain occupied, while sites that are not occupied become occupied if and only if three of more sites in their nei...
April 24, 2017
We investigate bootstrap percolation with infection threshold $r> 1$ on the binomial $k$-uniform random hypergraph $H_k(n,p)$ in the regime $n^{-1}\ll n^{k-2}p \ll n^{-1/r}$, when the initial set of infected vertices is chosen uniformly at random from all sets of given size. We establish a threshold such that if there are less vertices in the initial set of infected vertices, then whp only a few additional vertices become infected, while if the initial set of infected vertice...
August 30, 2019
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^3$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,3\}$, where $a_1\le a_2\le a_3$. Suppose we infect any healthy vertex $x\in [L]^3$ already having $a_3+1$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the critical length for percolation up to a...
March 4, 2015
Graph bootstrap percolation, introduced by Bollob\'as in 1968, is a cellular automaton defined as follows. Given a "small" graph $H$ and a "large" graph $G = G_0 \subseteq K_n$, in consecutive steps we obtain $G_{t+1}$ from $G_t$ by adding to it all new edges $e$ such that $G_t \cup e$ contains a new copy of $H$. We say that $G$ percolates if for some $t \geq 0$, we have $G_t = K_n$. For $H = K_r$, the question about the size of the smallest percolating graphs was independe...
December 25, 2013
This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by ${\mathcal{U}}(x)$ the neighbourhood of site $x$, the transition probability is $T(\eta_x = 1 | \eta_{{\mathcal{U}}(x)}) = 0$ if $\eta_{{\mathcal{U}}(x)}= \mathbf{0}$ or $p$ otherwise, $\forall x \in \mathbb{Z}$. For any $\mathcal{U}$ there exists a non-trivial critical probability $p_c({\mathcal{U}})$ that separates a phase with an absorbing stat...
March 26, 2014
We study a new geometric bootstrap percolation model, line percolation, on the $d$-dimensional integer grid $[n]^d$. In line percolation with infection parameter $r$, infection spreads from a subset $A\subset [n]^d$ of initially infected lattice points as follows: if there exists an axis-parallel line $L$ with $r$ or more infected lattice points on it, then every lattice point of $[n]^d$ on $L$ gets infected, and we repeat this until the infection can no longer spread. The el...
November 13, 2020
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the...
September 26, 2018
Consider a graph $G$ and an initial random configuration, where each node is black with probability $p$ and white otherwise, independently. In discrete-time rounds, each node becomes black if it has at least $r$ black neighbors and white otherwise. We prove that this basic process exhibits a threshold behavior with two phase transitions when the underlying graph is a $d$-dimensional torus and identify the threshold values.
November 5, 2019
This paper is dedicated to the study of the interaction between dynamical systems and percolation models, with views towards the study of viral infections whose virus mutate with time. Recall that r-bootstrap percolation describes a deterministic process where vertices of a graph are infected once r neighbors of it are infected. We generalize this by introducing F(t)-bootstrap percolation, a time-dependent process where the number of neighbouring vertices which need to be inf...