October 16, 2010
In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...
June 29, 2018
Bootstrap percolation is a wide class of monotone cellular automata with random initial state. In this work we develop tools for studying in full generality one of the three `universality' classes of bootstrap percolation models in two dimensions, termed subcritical. We introduce the new notion of `critical densities' serving the role of `difficulties' for critical models, but adapted to subcritical ones. We characterise the critical probability in terms of these quantities a...
August 11, 2015
Majority bootstrap percolation on a graph $G$ is an epidemic process defined in the following manner. Firstly, an initially infected set of vertices is selected. Then step by step the vertices that have more infected than non-infected neighbours are infected. We say that percolation occurs if eventually all vertices in $G$ become infected. In this paper we study majority bootstrap percolation on the Erd\H{o}s-R\'enyi random graph $G(n,p)$ above the connectivity threshold. P...
June 22, 2017
In the polluted bootstrap percolation model, vertices of the cubic lattice $\mathbb{Z}^3$ are independently declared initially occupied with probability $p$ or closed with probability $q$. Under the standard (respectively, modified) bootstrap rule, a vertex becomes occupied at a subsequent step if it is not closed and it has at least $3$ occupied neighbors (respectively, an occupied neighbor in each coordinate). We study the final density of occupied vertices as $p,q\to 0$. W...
July 28, 2017
In $r$-neighbour bootstrap percolation, vertices (sites) of a graph $G$ are infected, round-by-round, if they have $r$ neighbours already infected. Once infected, they remain infected. An initial set of infected sites is said to percolate if every site is eventually infected. We determine the maximal percolation time for $r$-neighbour bootstrap percolation on the hypercube for all $r \geq 3$ as the dimension $d$ goes to infinity up to a logarithmic factor. Surprisingly, it tu...
November 10, 2016
We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with $(1,2)$-neighbourhood and threshold $r = 3$. The first order asymptotics for the critical probability were recently determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: \[ p_c\big( [L]^2,\mathcal{N}_{(1,2)},3 \big) \; = \; \frac{(\log \log L)^2}{12\log L} \, - \, \frac{\log ...
February 18, 2016
Geometric inhomogeneous random graphs (GIRGs) are a model for scale-free networks with underlying geometry. We study bootstrap percolation on these graphs, which is a process modelling the spread of an infection of vertices starting within a (small) local region. We show that the process exhibits a phase transition in terms of the initial infection rate in this region. We determine the speed of the process in the supercritical case, up to lower order terms, and show that its ...
September 28, 2015
Answering questions of Itai Benjamini, we show that the event of complete occupation in 2-neighbour bootstrap percolation on the d-dimensional box [n]^d, for d\geq 2, at its critical initial density p_c(n), is noise sensitive, while in k-neighbour bootstrap percolation on the d-regular random graph G_{n,d}, for 2\leq k\leq d-2, it is insensitive. Many open problems remain.
December 4, 1998
We consider the problem of bootstrap percolation on a three dimensional lattice and we study its finite size scaling behavior. Bootstrap percolation is an example of Cellular Automata defined on the $d$-dimensional lattice $\{1,2,...,L\}^d$ in which each site can be empty or occupied by a single particle; in the starting configuration each site is occupied with probability $p$, occupied sites remain occupied for ever, while empty sites are occupied by a particle if at least $...
May 4, 2017
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Z^d of dimension d>=3 with threshold r=2, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result pa...