April 28, 2023
Recent generalizations of the Hopfield model of associative memories are able to store a number $P$ of random patterns that grows exponentially with the number $N$ of neurons, $P=\exp(\alpha N)$. Besides the huge storage capacity, another interesting feature of these networks is their connection to the attention mechanism which is part of the Transformer architectures widely applied in deep learning. In this work, we study a generic family of pattern ensembles using a statistical mechanics analysis which gives exact asymptotic thresholds for the retrieval of a typical pattern, $\alpha_1$, and lower bounds for the maximum of the load $\alpha$ for which all patterns can be retrieved, $\alpha_c$, as well as sizes of attraction basins. We discuss in detail the cases of Gaussian and spherical patterns, and show that they display rich and qualitatively different phase diagrams.
Similar papers 1
October 30, 2024
We study the optimal memorization capacity of modern Hopfield models and Kernelized Hopfield Models (KHMs), a transformer-compatible class of Dense Associative Memories. We present a tight analysis by establishing a connection between the memory configuration of KHMs and spherical codes from information theory. Specifically, we treat the stored memory set as a specialized spherical code. This enables us to cast the memorization problem in KHMs into a point arrangement problem...
December 2, 2019
Recently, Hopfield and Krotov introduced the concept of {\em dense associative memories} [DAM] (close to spin-glasses with $P$-wise interactions in a disordered statistical mechanical jargon): they proved a number of remarkable features these networks share and suggested their use to (partially) explain the success of the new generation of Artificial Intelligence. Thanks to a remarkable ante-litteram analysis by Baldi \& Venkatesh, among these properties, it is known these ne...
March 29, 2023
The Hopfield model is a paradigmatic model of neural networks that has been analyzed for many decades in the statistical physics, neuroscience, and machine learning communities. Inspired by the manifold hypothesis in machine learning, we propose and investigate a generalization of the standard setting that we name Random-Features Hopfield Model. Here $P$ binary patterns of length $N$ are generated by applying to Gaussian vectors sampled in a latent space of dimension $D$ a ra...
July 11, 2022
Hopfield model is one of the few neural networks for which analytical results can be obtained. However, most of them are derived under the assumption of random uncorrelated patterns, while in real life applications data to be stored show non-trivial correlations. In the present paper we study how the retrieval capability of the Hopfield network at null temperature is affected by spatial correlations in the data we feed to it. In particular, we use as patterns to be stored the...
April 5, 2024
We propose a two-stage memory retrieval dynamics for modern Hopfield models, termed $\mathtt{U\text{-}Hop}$, with enhanced memory capacity. Our key contribution is a learnable feature map $\Phi$ which transforms the Hopfield energy function into a kernel space. This transformation ensures convergence between the local minima of energy and the fixed points of retrieval dynamics within the kernel space. Consequently, the kernel norm induced by $\Phi$ serves as a novel similarit...
January 8, 2024
Dense Hopfield networks are known for their feature to prototype transition and adversarial robustness. However, previous theoretical studies have been mostly concerned with their storage capacity. We bridge this gap by studying the phase diagram of p-body Hopfield networks in the teacher-student setting of an unsupervised learning problem, uncovering ferromagnetic phases reminiscent of the prototype and feature learning regimes. On the Nishimori line, we find the critical si...
August 3, 2016
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of $O(N)$, where $N$ is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neur...
July 16, 2020
We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed...
November 13, 2024
Associative memory models, such as Hopfield networks and their modern variants, have garnered renewed interest due to advancements in memory capacity and connections with self-attention in transformers. In this work, we introduce a unified framework-Hopfield-Fenchel-Young networks-which generalizes these models to a broader family of energy functions. Our energies are formulated as the difference between two Fenchel-Young losses: one, parameterized by a generalized entropy, d...
October 31, 2024
Dense Associative Memories are high storage capacity variants of the Hopfield networks that are capable of storing a large number of memory patterns in the weights of the network of a given size. Their common formulations typically require storing each pattern in a separate set of synaptic weights, which leads to the increase of the number of synaptic weights when new patterns are introduced. In this work we propose an alternative formulation of this class of models using ran...