May 6, 1998
We solve the dynamics of Hopfield-type neural networks which store sequences of patterns, close to saturation. The asymmetry of the interaction matrix in such models leads to violation of detailed balance, ruling out an equilibrium statistical mechanical analysis. Using generating functional methods we derive exact closed equations for dynamical order parameters, viz. the sequence overlap and correlation- and response functions, in the thermodynamic limit. We calculate the ti...
August 16, 2020
Dense Associative Memories or modern Hopfield networks permit storage and reliable retrieval of an exponentially large (in the dimension of feature space) number of memories. At the same time, their naive implementation is non-biological, since it seemingly requires the existence of many-body synaptic junctions between the neurons. We show that these models are effective descriptions of a more microscopic (written in terms of biological degrees of freedom) theory that has add...
November 17, 2014
The Hopfield recurrent neural network is a classical auto-associative model of memory, in which collections of symmetrically-coupled McCulloch-Pitts neurons interact to perform emergent computation. Although previous researchers have explored the potential of this network to solve combinatorial optimization problems and store memories as attractors of its deterministic dynamics, a basic open problem is to design a family of Hopfield networks with a number of noise-tolerant me...
March 15, 2004
We examine a previouly introduced attractor neural network model that explains the persistent activities of neurons in the anterior ventral temporal cortex of the brain. In this model, the coexistence of several attractors including correlated attractors was reported in the cases of finite and infinite loading. In this paper, by means of a statistical mechanical method, we study the statics and dynamics of the model in both finite and extensive loading, mainly focusing on the...
May 9, 2023
Hopfield networks are artificial neural networks which store memory patterns on the states of their neurons by choosing recurrent connection weights and update rules such that the energy landscape of the network forms attractors around the memories. How many stable, sufficiently-attracting memory patterns can we store in such a network using $N$ neurons? The answer depends on the choice of weights and update rule. Inspired by setwise connectivity in biology, we extend Hopfiel...
April 11, 1996
We investigate the retrieval phase diagrams of an asynchronous fully-connected attractor network with non-monotonic transfer function by means of a mean-field approximation. We find for the noiseless zero-temperature case that this non-monotonic Hopfield network can store more patterns than a network with monotonic transfer function investigated by Amit et al. Properties of retrieval phase diagrams of non-monotonic networks agree with the results obtained by Nishimori and Opr...
November 25, 2022
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large netw...
February 7, 2017
In [7] Krotov and Hopfield suggest a generalized version of the well-known Hopfield model of associative memory. In their version they consider a polynomial interaction function and claim that this increases the storage capacity of the model. We prove this claim and take the "limit" as the degree of the polynomial becomes infinite, i.e. an exponential interaction function. With this interaction we prove that model has an exponential storage capacity in the number of neurons, ...
March 4, 2024
In \cite{Hop82}, Hopfield introduced a \emph{Hebbian} learning rule based neural network model and suggested how it can efficiently operate as an associative memory. Studying random binary patterns, he also uncovered that, if a small fraction of errors is tolerated in the stored patterns retrieval, the capacity of the network (maximal number of memorized patterns, $m$) scales linearly with each pattern's size, $n$. Moreover, he famously predicted $\alpha_c=\lim_{n\rightarrow\...
February 5, 2013
We consider the problem of neural association for a network of non-binary neurons. Here, the task is to first memorize a set of patterns using a network of neurons whose states assume values from a finite number of integer levels. Later, the same network should be able to recall previously memorized patterns from their noisy versions. Prior work in this area consider storing a finite number of purely random patterns, and have shown that the pattern retrieval capacities (maxim...