May 19, 2023
Similar papers 3
August 15, 2018
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method su...
April 11, 2015
Advances in materials science have led to physical instantiations of self-assembled networks of memristive devices and demonstrations of their computational capability through reservoir computing. Reservoir computing is an approach that takes advantage of collective system dynamics for real-time computing. A dynamical system, called a reservoir, is excited with a time-varying signal and observations of its states are used to reconstruct a desired output signal. However, such ...
November 29, 2016
Advanced neural interfaces mediate a bio-electronic link between the nervous system and microelectronic devices, bearing great potential as innovative therapy for various diseases. Spikes from a large number of neurons are recorded leading to creation of big data that require on-line processing under most stringent conditions, such as minimal power dissipation and on-chip space occupancy. Here, we present a new concept where the inherent volatile properties of a nano-scale me...
October 14, 2014
We show theoretically that networks of membrane memcapacitive systems -- capacitors with memory made out of membrane materials -- can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of t...
October 6, 2022
Reservoir computing is a machine learning paradigm that transforms the transient dynamics of high-dimensional nonlinear systems for processing time-series data. Although reservoir computing was initially proposed to model information processing in the mammalian cortex, it remains unclear how the non-random network architecture, such as the modular architecture, in the cortex integrates with the biophysics of living neurons to characterize the function of biological neuronal n...
December 9, 2022
Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and...
January 29, 2022
Neuromorphic engineering has led to the necessary process of rethinking of how we process and integrate information, analyze data, and use the resulting insights to improve computation and avoid the current high power and latency of Artificial Intelligence (AI) hardware. Current neuromorphic processors are, however, limited by digital technologies, which cannot reproduce the abilities of biological neural computation in terms of power, latency and area cost. In this paper, we...
January 29, 2021
Advances in artificial intelligence are driven by technologies inspired by the brain, but these technologies are orders of magnitude less powerful and energy efficient than biological systems. Inspired by the nonlinear dynamics of neural networks, new unconventional computing hardware has emerged with the potential to exploit natural phenomena and gain efficiency, in a similar manner to biological systems. Physical reservoir computing demonstrates this with a variety of uncon...
September 4, 2019
On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However,...
July 8, 2015
Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, cont...